package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.3.tar.gz
sha256=062f33c55ef39706c4290dff67d5a00bf009051fd757f9352be527f629ae21fc
md5=eb4edc4d6b7e15b83d6397bd34994153
doc/src/alba.core/gamma_algo.ml.html
Source file gamma_algo.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
open Fmlib open Common type name_violation = | Upper_for_proposition | Lower_for_type | Upper_for_object let strings_of_violation : name_violation -> string * string = function | Upper_for_proposition -> "Upper", "proposition" | Lower_for_type -> "Lower", "type or type constructor" | Upper_for_object -> "Upper", "object or function" module type GAMMA = sig type t val count: t -> int val is_valid_index: int -> t -> bool val name_of_index: int -> t -> string val push_local: string -> Term.typ -> t -> t val type_of_literal: Term.Value.t -> t -> Term.typ val type_of_variable: int -> t -> Term.typ val definition_term: int -> t -> Term.t option end module Make (Gamma: GAMMA) = struct include Gamma module String_print = Term_printer.String_print (Gamma) let string_of_term (t: Term.t) (c: t): string = String_print.string_of_term t c let _ = string_of_term let key_split (t: Term.t) (c: t) : Term.t * (Term.t * Term.Application_info.t) list = let rec split t args = let open Term in match t with | Variable i -> (match definition_term i c with | None -> t, args | Some def -> split def args) | Lambda (_, exp, _) -> ( match args with | [] -> t, args | (arg, _) :: args -> split Term.(apply exp arg) args ) | Appl (f, arg, mode) -> split f ((arg, mode) :: args) | Typed (term, _) -> split term args | Where (_, _, exp, def) -> split (apply exp def) args | _ -> t, args in split t [] let key_normal (t: Term.t) (c: t): Term.t = let key, args = key_split t c in List.fold_left (fun res (arg, mode) -> Term.Appl (res, arg, mode)) key args let rec normalize_pi (typ: Term.typ) (c: t): Term.typ = let open Term in match key_normal typ c with | Pi (tp, res, info) -> Pi ( tp, normalize_pi res (push_local (Pi_info.name info) tp c), info ) | typ -> typ let rec normalize (term: Term.t) (c: t): Term.t = let normalize_key key c = let open Term in match key with | Lambda (tp, exp, info) -> Lambda ( normalize tp c, normalize exp (push_local (Lambda_info.name info) tp c), info ) | Pi (tp, res, info) -> Pi ( normalize tp c, normalize res (push_local (Pi_info.name info) tp c), info ) | _ -> key in let key, args = key_split term c in List.fold_left (fun res (arg, mode) -> Term.Appl (res, normalize arg c, mode)) (normalize_key key c) args let type_of_term (t: Term.t) (c: t): Term.typ = let rec typ t c = let open Term in match t with | Sort s -> type_of_sort s | Value v -> type_of_literal v c | Variable i -> type_of_variable i c | Typed (_, tp) -> tp | Appl (f, a, _) -> (match key_normal (typ f c) c with | Pi (_, rt, _) -> apply rt a | _ -> assert false (* Illegal call! Term is not welltyped. *) ) | Lambda (tp, exp, info) -> let c_inner = push_local (Lambda_info.name info) tp c in let rt = typ exp c_inner in let info = if has_variable 0 rt then Pi_info.typed (Lambda_info.name info) else Pi_info.arrow in Pi (tp, rt, info) | Pi (tp, rt, info) -> let name = Pi_info.name info in (match typ tp c, typ rt (push_local name tp c) with | Sort s1, Sort s2 -> let open Sort in (match s1, s2 with | Proposition, Any i -> Sort (Any i) | Any i, Any j -> Sort (Any (max i j)) | _, Proposition -> Sort Proposition ) | _, _ -> assert false (* Illegal call: term is not welltyped! *) ) | Where (name, tp, exp, def) -> typ (expand_where name tp exp def) c in typ t c let split_type (typ: Term.typ) (c: t) : (Term.Pi_info.t * Term.typ) list * Term.typ = let rec split args typ c = let open Term in match key_normal typ c with | Pi (arg, res, info) -> split ((info, arg) :: args) res (push_local (Pi_info.name info) arg c) | typ -> List.rev args, typ in split [] typ c let split_kind (k: Term.typ) (c: t) : ((Term.Pi_info.t * Term.typ) list * Term.Sort.t) option = let args, res = split_type k c in let open Term in match res with | Sort s -> Some (args, s) | _ -> None let sort_of_kind (k: Term.typ) (c:t): Term.Sort.t option = Option.map snd (split_kind k c) let is_kind (k: Term.typ) (c: t): bool = Option.has (sort_of_kind k c) let check_naming_convention (name: string) (typ: Term.typ) (c: t) : (unit, name_violation) result = (* [check_naming_convention name sort]. Check, if [name] satisfies the naming convention for a type of sort [sort]. If yes, return [Ok ()]. If not return the name violation. *) let is_lower, is_upper = if String.length name > 0 then let c = name.[0] in Char.is_lower c, Char.is_upper c else false, false in match sort_of_kind typ c with | Some (Term.Sort.Any _) -> (* Must be upper case *) if is_lower then Error Lower_for_type else Ok () | Some Term.Sort.Proposition -> (* Must be lower case *) if is_upper then Error Upper_for_proposition else Ok () | None -> (* proof or object, must be lower case *) if is_upper then Error Upper_for_object else Ok () end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>