package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.1.tar.gz
sha256=439b1dce07c86e914d1ebf1712c5581418314b0c8d13594f27a698b1d25fe272
md5=5cf58d4ed4eacbe6f330e9d2378ef5c6
doc/src/alba.fmlib/segmented_array.ml.html
Source file segmented_array.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
(* Let b be the bitsize of the branching factor and h be the height of the node (a leaf node has height 0). The maximum capacity of a tree is 2^((h+1)*b) h capacity 0 2^5 32 1 2^10 1024 (32*32) 2 2^15 32768 (32*32*32) 3 2^20 1048576 (32*32*32) Capacity of a slot: 2^(h*b). Capacity of m slots: m * 2^(h*b). Find an element i: slot = i / 2^(h*b) (i lsr h*b) relative index = i mod 2^(h*b) = i - slot lsl h*b Append an element: a) tree is full: size = capacity new root with two nodes, the first one is the original, the second is a new node with one element at all levels below b) tree is not full: size < capacity b1) all slots are full: create a new slot b2) last slot has still capacity *) let bitsize = 5 (* or the branching factor, i.e. branching factor = 32 *) let node_size = 1 lsl bitsize type 'a t = | Leaf of 'a array | Node of int * int * 'a t array (* size, level, nodes *) let map (f:'a ->'b) (t:'a t): 'b t = let rec map (t:'a t): 'b t = match t with | Leaf arr -> Leaf (Array.map f arr) | Node (size, h, arr) -> Node (size, h, Array.map map arr) in map t let empty = Leaf [||] let length (t:'a t): int = match t with | Leaf arr -> Array.length arr | Node (size,_,_) -> size let is_empty (t:'a t): bool = length t = 0 let slot_of_index (level: int) (index: int): int = index lsr (level * bitsize) let slot_and_offset (index: int) (level: int): int * int = (* find the slot and the offset of the index within the slot. *) let slot = slot_of_index level index in let offset = index - slot lsl (level * bitsize) in slot, offset let rec elem (i:int) (t:'a t): 'a = assert (0 <= i); assert (i < length t); match t with | Leaf arr -> arr.(i) | Node (_,h,arr) -> let slot,offset = slot_and_offset i h in assert (slot < Array.length arr); elem offset arr.(slot) let rec singleton_with_height (e:'a) (h:int): 'a t = assert (0 <= h); if h = 0 then Leaf [|e|] else Node (1,h, [|singleton_with_height e (h-1)|]) let singleton (a:'a): 'a t = singleton_with_height a 0 let push_array (e:'a) (arr:'a array): 'a array = let len = Array.length arr in let arr2 = Array.make (len+1) e in Array.blit arr 0 arr2 0 len; arr2 let put_array (i:int) (e:'a) (arr:'a array): 'a array = let arr2 = Array.copy arr in arr2.(i) <- e; arr2 let rec put (i:int) (e:'a) (t:'a t): 'a t = assert (i < length t); match t with | Leaf arr -> Leaf (put_array i e arr) | Node (s,h,arr) -> let slot, rel = slot_and_offset i h in let arr = put_array slot (put rel e arr.(slot)) arr in Node (s,h,arr) let push (e:'a) (t:'a t): 'a t = let n = length t in let rec push0 e t = match t with | Leaf arr -> let len = Array.length arr in if len < node_size then Leaf (push_array e arr), false else Node (len+1,1,[|Leaf arr; Leaf [|e|]|]), true | Node (size,h,arr) -> assert (0 < h); let len = Array.length arr in assert (0 < len); if size = len * (1 lsl (h*bitsize)) then if len = node_size then (* introduce a new level *) Node (size+1, h+1, [|t; singleton_with_height e h|]), true else (* introduce a new slot *) Node (size+1, h, push_array (singleton_with_height e (h-1)) arr), false else (* push into last slot *) let t0, incr = push0 e arr.(len-1) in assert (not incr); let arr2 = Array.copy arr in arr2.(len-1) <- t0; Node (size+1,h,arr2), false in let t,_ = push0 e t in assert (length t = n + 1); t let rec push_list (l:'a list) (t:'a t): 'a t = match l with | [] -> t | e :: l -> push_list l (push e t) let push_array (arr:'a array) (t:'a t): 'a t = Array.fold_left (fun t e -> push e t) t arr let of_list (l:'a list): 'a t = push_list l empty let of_array (arr:'a array): 'a t = push_array arr empty let rec take (n:int) (t:'a t): 'a t = assert (n <= length t); match t with | Leaf arr -> Leaf (Array.sub arr 0 n) | Node (s,h,arr) -> if n = s then t else let slot,rel = slot_and_offset n h in let slot,rel = if rel = 0 && 0 < slot then slot - 1, 1 lsl (h*bitsize) else slot,rel in let t0 = take rel arr.(slot) in if slot = 0 then t0 else let arr = Array.sub arr 0 (slot+1) in arr.(slot) <- t0; Node (n,h,arr) let remove_last (n: int) (arr: 'a t): 'a t = let len = length arr in assert (n <= len); take (len - n) arr let to_array (arr:'a t): 'a array = Array.init (length arr) (fun i -> elem i arr) let to_string (arr:char t): string = String.init (length arr) (fun i -> elem i arr) (* ------------------------------------------------------------ Unit Tests ------------------------------------------------------------*) let fill (n:int): int t = assert (0 <= n); let rec fill0 (i:int) (t:int t): int t = if i = n then t else fill0 (i+1) (push i t) in fill0 0 empty let overwrite (n:int) (t:int t): int t = let rec over i t = if i = n then t else over (i+1) (put i (i+1) t) in over 0 t let%test _ = let n = 32768 in let t = fill n in let check = ref true in for i = 0 to n - 1 do check := !check && elem i t = i done; !check let%test _ = let n = 32768 in let t = fill n in let t1 = overwrite n t in let check = ref true in for i = 0 to n - 1 do check := !check && elem i t1 = i +1 done; !check let%test _ = let n = 32768 in let m = 1024 in let t = fill n in let t2 = take m t in let check = ref true in for i = 0 to m - 1 do check := !check && elem i t2 = i done; !check && length t2 = m
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>