package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acg-2.1.0-20240219.tar.gz
sha512=5d380a947658fb1201895cb4cb449b1f60f54914c563e85181d628a89f045c1dd7b5b2226bb7865dd090f87caa9187e0ea6c7a4ee3dc3dda340d404c4e76c7c2
doc/src/acgtk.acgData/acg_lexicon.ml.html
Source file acg_lexicon.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
(**************************************************************************) (* *) (* ACG development toolkit *) (* *) (* Copyright 2008-2023 INRIA *) (* *) (* More information on "https://acg.loria.fr/" *) (* License: CeCILL, see the LICENSE file or "http://www.cecill.info" *) (* Authors: see the AUTHORS file *) (* *) (* *) (* *) (* *) (* *) (**************************************************************************) open UtilsLib open Containers open Logic open Abstract_syntax open Lambda open Signature module Log = Xlog.Make (struct let name = "Acg_lexicon" end) module MagicLog = Xlog.Make (struct let name = "Acg_lexicon/Magic" end) module ParsingLog = Xlog.Make (struct let name = "Acg_lexicon/Parsing_check" end) module Data_Lexicon = struct exception Duplicate_type_interpretation exception Duplicate_constant_interpretation exception Not_almost_linear module Pair = struct type kind = Type | Cst type t = string * kind let compare (s, k) (s', k') = match (k, k') with | Type, Cst -> -1 | Cst, Type -> 1 | _, _ -> String.compare s s' end module Dico = Map.Make (Pair) type resumptions = int SharedForest.SharedForest.Resumptions.resumptions * int SharedForest.SharedForest.forest * (Data_Signature.term * Data_Signature.stype) type interpretation = | Type of (Abstract_syntax.location * Lambda.stype) | Constant of (Abstract_syntax.location * Lambda.term) let pp_interpretation fun_type_from_id i sg fmt abstract_type_or_cst_id = let pp_term = Data_Signature.pp_term sg in let pp_type = Data_Signature.pp_type sg in match i with | Type (_, t) -> pp_type fmt t | Constant (_, c) -> let eta_long = Data_Signature.eta_long_form c (fun_type_from_id abstract_type_or_cst_id) sg in Format.fprintf fmt "%a [eta-long form: %a {%s}]" pp_term c pp_term eta_long (Lambda.raw_to_string eta_long) module Datalog = DatalogLib.Datalog.Datalog module DatalogRule = Datalog.Rule module DatalogPredMap = Datalog.Predicate.PredMap module DatalogAbstractSyntax = DatalogLib.Datalog_AbstractSyntax.AbstractSyntax module ASPred = DatalogAbstractSyntax.Predicate module ASProg = DatalogAbstractSyntax.Program module ASRule = DatalogAbstractSyntax.Rule module RuleToCstMap = Utils.IntMap type datalog_correspondance = { prog : Datalog.Program.program; magic_programs : (Datalog.Program.program * MagicRewriting.Rewriting.magic_context) MagicRewriting.Rewriting.QueryMap.t option; rule_to_cst : Lambda.term RuleToCstMap.t; cst_to_rule : int Utils.IntMap.t; generated_symbols : string Utils.IntMap.t * Utils.StringSet.t; (* These maps and sets record map from ids of object constants to symbols that where generated for extensional predicates to avoid a name clash when an object constant has the same name as an abstract atomic type *) } type 'a build = | Interpret of (string * string) | Compose of ('a list) [@@@warning "-69"] type t = { name : string * Abstract_syntax.location; dico : interpretation Dico.t; syntax_dico : Abstract_syntax.lex_entry Dico.t option; non_linear_interpretation : bool; abstract_sig : Data_Signature.t; object_sig : Data_Signature.t; datalog_prog : datalog_correspondance option; build : string build; timestamp : float; is_almost_linear : bool; } type dumped_t = { dumped_name : string * Abstract_syntax.location; dumped_dico : interpretation Dico.t; dumped_syntax_dico : Abstract_syntax.lex_entry Dico.t option; dumped_non_linear_interpretation : bool; dumped_abstract_sig : (string * Data_Signature.id) * string; dumped_object_sig : (string * Data_Signature.id) * string; dumped_datalog_prog : datalog_correspondance option; dumped_build : string build; dumped_timestamp : float; dumped_is_almost_linear : bool; } let name_of_dumped l = fst (l.dumped_name) let prepare_dump (l:t) = { dumped_name = l.name; dumped_dico = l.dico; dumped_syntax_dico = l.syntax_dico; dumped_non_linear_interpretation = l.non_linear_interpretation; dumped_abstract_sig = Data_Signature.full_name l.abstract_sig; dumped_object_sig = Data_Signature.full_name l.object_sig; dumped_datalog_prog= l.datalog_prog; dumped_build = l.build; dumped_timestamp = l.timestamp; dumped_is_almost_linear = l.is_almost_linear; } let recover_from_dump ~filename ~get_sig l = let check_and_get_sig ((sg_name, sg_id), _) = let sg = (get_sig sg_name) in let sg_name_id, sg_filename = (Data_Signature.full_name sg) in if sg_name_id = (sg_name, sg_id) then sg else Errors.(LexiconErrors.emit (Lexicon_l.NotCompatibleSignature (fst l.dumped_name, filename, sg_name, sg_filename))) in { name = l.dumped_name; dico = l.dumped_dico; syntax_dico = l.dumped_syntax_dico; non_linear_interpretation = l.dumped_non_linear_interpretation; abstract_sig = check_and_get_sig l.dumped_abstract_sig; object_sig = check_and_get_sig l.dumped_object_sig; datalog_prog= l.dumped_datalog_prog; build = l.dumped_build; timestamp = l.dumped_timestamp; is_almost_linear = l.dumped_is_almost_linear; } [@@@warning "+69"] type dependency = | Signatures of (string * string) | Lexicons of string list type parsing = | Available_with_magic | Available_wo_magic let get_dependencies lex = match lex.build with | Interpret s -> Signatures s | Compose l -> Lexicons l let pp_lex fmt lex = let name, _ = lex.name in Utils.lex_pp fmt name let short_pp fmt ({ abstract_sig = abs_sg; object_sig = obj_sg; _ } as lex) = Format.fprintf fmt "lexicon@ %a(%a):@ %a" pp_lex lex Utils.sig_pp (fst (Data_Signature.name abs_sg)) Utils.sig_pp (fst (Data_Signature.name obj_sg)) let name { name = n; _ } = n let get_sig { abstract_sig = abs; object_sig = obj; _ } = (abs, obj) let empty ?(non_linear = false) ~abs ~obj name = let prog = (* if (Data_Signature.is_2nd_order abs) && (not non_linear) then *) if Data_Signature.is_2nd_order abs then (* Some (Datalog.Program.empty,RuleToCstMap.empty) *) Some { prog = Datalog.Program.empty; magic_programs = None; rule_to_cst = RuleToCstMap.empty; cst_to_rule = Utils.IntMap.empty; generated_symbols = (Utils.IntMap.empty, Utils.StringSet.empty); } else None in { name; dico = Dico.empty; syntax_dico = Some Dico.empty; abstract_sig = abs; object_sig = obj; datalog_prog = prog; non_linear_interpretation = non_linear; build = Data_Signature.(Interpret (fst (name abs), fst (name obj))); timestamp = Unix.time (); is_almost_linear = true; } let is_linear { non_linear_interpretation; _ } = not non_linear_interpretation let emit_missing_inter lex lst = let lex_name, loc = name lex in let abs_name, _ = Data_Signature.name lex.abstract_sig in Errors.(LexiconErrors.emit (Lexicon_l.MissingInterpretations (lex_name, abs_name, lst)) ~loc) let rec interpret_type abs_ty ({ abstract_sig = abs_sg; dico; _ } as lex) = match abs_ty with | Lambda.Atom i -> ( let () = assert ( snd (Data_Signature.id_to_string abs_sg i) = Format.asprintf "%a" (Data_Signature.pp_type abs_sg) abs_ty) in let abs_ty_as_str = snd (Data_Signature.id_to_string abs_sg i) in match Dico.find (abs_ty_as_str, Pair.Type) dico with | Type (_, obj_ty) -> Data_Signature.expand_type obj_ty lex.object_sig | Constant _ -> failwith "Bug" | exception Not_found -> emit_missing_inter lex [ abs_ty_as_str ]) | Lambda.DAtom i -> interpret_type (Data_Signature.unfold_type_definition i abs_sg) lex | Lambda.LFun (ty1, ty2) -> if lex.non_linear_interpretation then Lambda.Fun (interpret_type ty1 lex, interpret_type ty2 lex) else Lambda.LFun (interpret_type ty1 lex, interpret_type ty2 lex) | Lambda.Fun (ty1, ty2) -> Lambda.Fun (interpret_type ty1 lex, interpret_type ty2 lex) | _ -> failwith "Not yet implemented" let rec interpret_term abs_t ({ abstract_sig = abs_sg; dico; _ } as lex) = match abs_t with | Lambda.Var _ -> abs_t | Lambda.LVar i -> if lex.non_linear_interpretation then Lambda.Var i else abs_t | Lambda.Const _ -> ( let abs_term_as_str = Format.asprintf "%a" (Data_Signature.pp_term abs_sg) abs_t in match Dico.find (abs_term_as_str, Pair.Cst) dico with | Constant (_, obj_t) -> obj_t | Type _ -> failwith "Bug" | exception Not_found -> emit_missing_inter lex [ abs_term_as_str ]) | Lambda.DConst i -> interpret_term (Data_Signature.unfold_term_definition i abs_sg) lex | Lambda.Abs (x, t) -> Lambda.Abs (x, interpret_term t lex) | Lambda.LAbs (x, t) -> if lex.non_linear_interpretation then Lambda.Abs (x, interpret_term t lex) else Lambda.LAbs (x, interpret_term t lex) | Lambda.App (t, u) -> Lambda.App (interpret_term t lex, interpret_term u lex) | _ -> failwith "Not yet implemented" let interpret t ty lex = let t_interpretation = interpret_term t lex in let t_interpretation = Lambda.normalize ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i lex.object_sig) t_interpretation in let ty_interpretation = interpret_type ty lex in (t_interpretation, ty_interpretation) let pp fmt ({ dico = d; abstract_sig = abs_sg; object_sig = obj_sg; _ } as lex) = let pp_dico fmt dico = Dico.iter (fun (id, _) i -> Format.fprintf fmt "@[<hv 2>%s :=@ %a;@]@;" id (pp_interpretation (fun id -> interpret_type (Data_Signature.type_of_constant id abs_sg) lex) i obj_sg) id) dico in let () = Format.fprintf fmt "@[<hv 2>@[" in let () = short_pp fmt lex in let () = Format.fprintf fmt " =@]@,@[<v>%a@]@," pp_dico d in let () = Format.fprintf fmt "-----------------------------------@," in match lex.datalog_prog with | None -> Format.fprintf fmt "@[This@ lexicon@ was@ not@ recognized@ as@ having@ a@ 2nd-order@ \ abstract@ signature@]@]" | Some { prog = p; _ } -> Format.fprintf fmt "@[This@ lexicon@ is@ recognized@ as@ having@ a@ 2nd-order@ abstract@ \ signature.@ The@ associated@ datalog@ program@ is:@,\ @[<v> @[%a@]@]" (DatalogAbstractSyntax.Program.pp ~with_position:false ~with_id:true) (Datalog.Program.to_abstract p) module Reduction = Reduction.Make (Data_Signature) (* This functions generates a new symbol for an extensional datalog predicate that corresponds to an object constant in case the symbol [s] being processed is already an atomic type, i.e., gave rise to an intensional predicate. It is ensured that the newly generated symbol does not conflict neither with another atomic type, another object constant, nor with an already generated symbol. The functions returns the new symbol (unchanged if not necessary) and the new set of generated symbols (unchanged if not necessary). *) let generate_unambiguous_obj_sym lex cst (map, syms) = let rec disambiguate id l_s = let () = Log.debug (fun m -> m "Testing \"%s\"" l_s) in if Data_Signature.is_type ~atomic:true l_s lex.abstract_sig || Utils.StringSet.mem l_s syms || match Data_Signature.is_constant l_s lex.object_sig with | true, Some (_, false, _) -> true | _, _ -> false then disambiguate id (Printf.sprintf "%s__" l_s) else let () = Log.debug (fun m -> m "Succeeded!") in (l_s, (Utils.IntMap.add id l_s map, Utils.StringSet.add l_s syms)) in let cst_name = Format.asprintf "%a" (Data_Signature.pp_term lex.object_sig) cst in (* Check if the object constant corresponds to an atomic type *) if Data_Signature.is_type ~atomic:true cst_name lex.abstract_sig then (* It does *) let () = Log.debug (fun m -> m "Needs to define a new symbol instead of \"%s\"" cst_name) in let new_sym = Printf.sprintf "%s__%s__" cst_name (fst (Data_Signature.name lex.object_sig)) in (* Get the id of the constant *) let cst_id = match cst with | Lambda.Const i -> i | _ -> failwith "Bug: Predicates should be build only for declared constants" in disambiguate cst_id new_sym else (* It does not: do nothing*) (cst_name, (map, syms)) let add_rule_for_cst_in_prog name duplicated abs_type interpreted_term lex { prog; magic_programs; rule_to_cst; cst_to_rule; generated_symbols } = let interpreted_type = interpret_type abs_type lex in let eta_long_term = Data_Signature.eta_long_form interpreted_term interpreted_type lex.object_sig in let pp_obj_term = Data_Signature.pp_term lex.object_sig in let pp_obj_type = Data_Signature.pp_type lex.object_sig in Log.info (fun m -> m "term: %a: %a" pp_obj_term interpreted_term pp_obj_type interpreted_type); Log.info (fun m -> m "eta-long form: %a" pp_obj_term eta_long_term); Log.info (fun m -> m "eta-long form (as caml term): %s" (Lambda.raw_to_caml eta_long_term)); Log.info (fun m -> m "Datalog rule addition: lexicon \"%s\", constant \"%s: %a\"" (fst lex.name) name (Data_Signature.pp_type lex.abstract_sig) abs_type); Log.info (fun m -> m "mapped to \"%a: %a\"" pp_obj_term eta_long_term pp_obj_type interpreted_type); let obj_princ_type, obj_typing_env = TypeInference.Type.inference eta_long_term in Log.info (fun m -> m "Interpreting \"%s\" as \"%a=%s\" with principle type: \"%s\"" name (Data_Signature.pp_term lex.object_sig) eta_long_term (Lambda.raw_to_caml eta_long_term) (Lambda.raw_type_to_string obj_princ_type)); Log.info (fun m -> let pp_typing_env fmt env = Utils.IntMap.iter (fun k (t, ty) -> Format.fprintf fmt "@[%d --> %s : %s@]" k (Lambda.raw_to_string t) (Lambda.raw_type_to_string ty)) env in m "In the context of:@,@[<v> @[%a@]@]" pp_typing_env obj_typing_env); let rule, new_prog, new_generated_symbols = Reduction.generate_and_add_rule ~abs_cst:(name, abs_type) ~obj_princ_type ~obj_typing_env ~abs_sig:lex.abstract_sig ~obj_sig:lex.object_sig ~update_fct:(generate_unambiguous_obj_sym lex) ~syms:generated_symbols prog in let cst_id, _ = Data_Signature.find_term name lex.abstract_sig in let cst_id_as_int = match cst_id with | Lambda.Const i -> i | _ -> failwith "Bug: Trying to add a rule that does not correspond to a constant" in let new_prog' = if duplicated then Datalog.Program.remove_rule (Utils.IntMap.find cst_id_as_int cst_to_rule) rule.DatalogAbstractSyntax.Rule.lhs .DatalogAbstractSyntax.Predicate.p_id new_prog else new_prog in (* new_prog,RuleToCstMap.add rule.DatalogAbstractSyntax.Rule.id cst_id rule_to_cst *) { prog = new_prog'; magic_programs; rule_to_cst = RuleToCstMap.add rule.DatalogAbstractSyntax.Rule.id cst_id rule_to_cst; cst_to_rule = Utils.IntMap.add cst_id_as_int rule.DatalogAbstractSyntax.Rule.id cst_to_rule; (* HERE: TODO: New value*) generated_symbols = new_generated_symbols; } let insert e ({ dico = d; _ } as lex) = match e with | Abstract_syntax.Type (id, loc, ty) -> let interpreted_type = Data_Signature.convert_type ty lex.object_sig in { lex with dico = Dico.add (id, Pair.Type) (Type (loc, interpreted_type)) d; } | Abstract_syntax.Constant (id, loc, t) -> let abs_type = Data_Signature.expand_type (Data_Signature.type_of_constant id lex.abstract_sig) lex.abstract_sig in let interpreted_type = interpret_type abs_type lex in let unfold i = Data_Signature.unfold_term_definition i lex.object_sig in let interpretation, is_almost_linear = Data_Signature.typecheck t interpreted_type lex.object_sig in let () = if not is_almost_linear then Logs.warn (fun m -> m "Because@ of@ \"%s :=@ %a :@ %a\",@ the@ lexicon@ \"%a\"@ \ is@ not@ almost@ linear." id (Data_Signature.pp_term lex.object_sig) interpretation (Data_Signature.pp_type lex.object_sig) interpreted_type Utils.lex_pp (let name, _ = lex.name in name)) in let interpreted_term = Lambda.normalize ~id_to_term:unfold interpretation in let prog = match (lex.datalog_prog, is_almost_linear) with | None, _ -> None | _, false -> None | Some p, true -> let duplicated_entry = Dico.mem (id, Pair.Cst) d in let new_prog = add_rule_for_cst_in_prog id duplicated_entry abs_type (Data_Signature.expand_term interpreted_term lex.object_sig) lex p in (* When a new constant has been added, it is necessary to regenerate the magic programs *) Some { new_prog with magic_programs = None } in { lex with dico = Dico.add (id, Pair.Cst) (Constant (loc, interpreted_term)) d; datalog_prog = prog; is_almost_linear = lex.is_almost_linear && is_almost_linear; } let rebuild_prog lex = match lex.datalog_prog with | None -> lex | Some _ -> ( try let new_prog = Dico.fold (fun (id, _) inter acc -> match inter with | Type (_, _) -> acc | Constant (_, t) -> add_rule_for_cst_in_prog id false (* When rebuilding, no risk of dublicated interpretations *) (Data_Signature.expand_type (Data_Signature.type_of_constant id lex.abstract_sig) lex.abstract_sig) t lex acc) lex.dico { prog = Datalog.Program.empty; magic_programs = None; rule_to_cst = RuleToCstMap.empty; cst_to_rule = Utils.IntMap.empty; generated_symbols = Utils.IntMap.empty, Utils.StringSet.empty; } in { lex with datalog_prog = Some new_prog } with Not_almost_linear -> { lex with is_almost_linear = false }) let parse ~alt_max ?(magic = true) (term, term_type) dist_type lex = let dist_type = Data_Signature.expand_type dist_type lex.abstract_sig in let term_type = Data_Signature.expand_type term_type lex.object_sig in let term = Lambda.normalize ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i lex.object_sig) (Data_Signature.expand_term term lex.object_sig) in match (lex.datalog_prog, dist_type) with | None, _ -> let () = Logs.warn (fun m -> m "Parsing@ is@ not@ implemented@ for@ non@ 2nd-order@ ACG.") in SharedForest.SharedForest.Resumptions.empty ~alt_max, [], ( term, dist_type) | ( Some { prog; magic_programs = Some q_to_prog_map; generated_symbols; _ }, (* A magic program is available and the --no-magic option is not set *) (Lambda.Atom _ as dist_type) ) when magic = true -> Log.info (fun m -> m "Before parsing. Program is currently:@,@[<v> @[%a@]@]" (DatalogAbstractSyntax.Program.pp ~with_position:false ~with_id:true) (Datalog.Program.to_abstract prog)); let dist_type_image = interpret_type dist_type lex in if dist_type_image <> term_type then let obj_term_type_s = Format.dprintf "%a" (Data_Signature.pp_type lex.object_sig) term_type in let abs_dist_type_s = Format.dprintf "%a" (Data_Signature.pp_type lex.abstract_sig) dist_type in let interpreted_abs_dist_type_s = Format.dprintf "%a" (Data_Signature.pp_type lex.object_sig) dist_type_image in let lex_name = Format.dprintf "%a" pp_lex lex in Errors.(CmdErrors.emit (Cmd_l.TypeMismatch (obj_term_type_s, abs_dist_type_s, interpreted_abs_dist_type_s, lex_name))) else let () = Log.info (fun m -> m "Term for the query: %a" (Data_Signature.pp_term lex.object_sig) term) in let obj_term = Data_Signature.eta_long_form term dist_type_image lex.object_sig in let obj_princ_type, obj_typing_env = TypeInference.Type.inference obj_term in Log.debug (fun m -> m "Going to set a query for the distinguised type \"%a(%s)\"" (Data_Signature.pp_type lex.abstract_sig) dist_type (Lambda.raw_type_to_string dist_type)); Log.debug (fun m -> m "whose image is \"%a(%s)\"" (Data_Signature.pp_type lex.object_sig) dist_type_image (Lambda.raw_type_to_string dist_type_image)); Log.debug (fun m -> m "resulting int the principle type \"%s\"" (Lambda.raw_type_to_string obj_princ_type)); (* original_query is the datalog query (compute from the distinguished type) original_queried_program is the unchanged datalog program (no facts from the edb resulting from the term to parse are added), and _facts_as_preds is a list of facts to be added *) (* let original_query, _facts_as_preds, original_queried_program = Reduction.only_edb_and_query ~obj_term ~obj_type:obj_princ_type ~obj_typing_env ~dist_type prog ~abs_sig:lex.abstract_sig ~obj_sig:lex.object_sig *) let original_query, original_queried_program = Reduction.edb_and_query ~obj_term ~obj_type:obj_princ_type ~obj_typing_env ~dist_type prog ~abs_sig:lex.abstract_sig ~obj_sig:lex.object_sig ~syms:generated_symbols in let () = Log.debug (fun m -> m "Done (query)") in let bfs, _ = MagicRewriting.Adornment.adornment ~bound_variables:ASPred.TermSet.empty original_query in let () = Log.debug (fun m -> m "Done (adornment of the query)") in let magic_program, magic_context = match MagicRewriting.Rewriting.QueryMap.find_opt (original_query.ASPred.p_id, bfs) q_to_prog_map with | None -> failwith "Bug: no magic rewritten program" | Some (p, c) -> (* the abstract magic program has been retrieved *) let abstract_program = Datalog.Program.to_abstract p in let () = Log.debug (fun m -> m "Found the following magic program for the query '%s':@,@[<v> @[%a@]@]" (MagicRewriting.Adornment.adorned_predicate_to_string ~pred_table:prog.Datalog.Program.pred_table (original_query, bfs)) (ASProg.pp ~with_position:false ~with_id:true) abstract_program) in let () = Log.debug (fun m -> m "It was built from the following unique binding program:@,@[<v> @[%a@]@]" (ASProg.pp ~with_position:false ~with_id:true) c.MagicRewriting.Rewriting.unique_binding_program) in ( Datalog.Program. { p with const_table = original_queried_program.const_table }, c ) in (* Add the facts to the magic program *) (* CHECK which facts have to be added !!! *) (* CHECK it is an adorned query *) let query, temp_magic_prog = Reduction.edb_and_query ~obj_term ~obj_type:obj_princ_type ~obj_typing_env ~dist_type ~adornment:bfs magic_program ~abs_sig:lex.abstract_sig ~obj_sig:lex.object_sig ~syms:generated_symbols in (* CHECK: je ne comprends pas pourquoi la règle seed est ajoutée au programme. Ne faudrrait-il pas que ce soit un prédicat magic ? Vérifié : c'est bien un prédicat magic qui est ajouté au programme magique. *) let temp_magic_prog' = MagicRewriting.Magic.query_to_seed_concrete query temp_magic_prog in let () = Log.info (fun m -> m "Going to solve the query: \"%a\" with the program:@,@[<v> @[%a@]@]" (DatalogAbstractSyntax.Predicate.pp temp_magic_prog'.Datalog.Program.pred_table temp_magic_prog'.Datalog.Program.const_table) query (DatalogAbstractSyntax.Program.pp ~with_position:false ~with_id:true) (Datalog.Program.to_abstract temp_magic_prog')) in let parse_time_start = Timer.top () in let _derived_facts, magic_derivations = Datalog.Program.seminaive temp_magic_prog' in let parse_time_end = Timer.top () in let () = Log.debug (fun m -> m "I could derive the following facts:@,@[ @[<v>%a@]@]" (Datalog.Predicate.pp_facts temp_magic_prog'.Datalog.Program.pred_table temp_magic_prog'.Datalog.Program.const_table) _derived_facts) in let () = Log.debug (fun m -> m "With the following derivations:@,@[<v> @[%a@]@]" (Datalog.Predicate.pp_facts_from_premises ~with_id:true temp_magic_prog'.Datalog.Program.pred_table temp_magic_prog'.Datalog.Program.const_table) magic_derivations) in let () = Log.debug (fun m -> m "Mapping of unique binding predicates to original program predicates:@[ @[<v>%a@]@]@]" (fun fmt unadorned_predicats -> ASPred.PredIdMap.iter (fun p_id_ub p_id_orig -> Format.fprintf fmt "@[%a ---> %a@]@," (ASPred.pp ~with_id:true magic_context.MagicRewriting.Rewriting.unique_binding_program.ASProg.pred_table DatalogLib.Datalog_AbstractSyntax.ConstGen.Table.empty) ASPred.{ p_id = p_id_ub; arity = 0; arguments = [] } (ASPred.pp ~with_id:true original_queried_program.Datalog.Program.pred_table DatalogLib.Datalog_AbstractSyntax.ConstGen.Table.empty) ASPred.{ p_id = p_id_orig; arity = 0; arguments = [] }) unadorned_predicats) magic_context.MagicRewriting.Rewriting.adorn_to_unadorm_pred_ids_map) in let derivations, prog_for_building_forest = let rewritten_derivations = MagicRewriting.Rewriting.rewrite_derivations magic_derivations magic_context in let () = Log.debug (fun m -> m "Rewritten derivations:@,@[<v>@[%a@]@]" (Datalog.Predicate.pp_facts_from_premises ~with_id:true original_queried_program.Datalog.Program.pred_table original_queried_program.Datalog.Program.const_table) rewritten_derivations) in (rewritten_derivations, original_queried_program) in let () = Log.debug (fun m -> m "Original query (original program): %a" (ASPred.pp ~with_id:true original_queried_program.Datalog.Program.pred_table original_queried_program.Datalog.Program.const_table) original_query) in let () = Log.debug (fun m -> m "Magic query: %a" (ASPred.pp ~with_id:true temp_magic_prog'.Datalog.Program.pred_table temp_magic_prog'.Datalog.Program.const_table) query) in let build_forest_start = Timer.top () in let parse_forest = Datalog.Program.build_forest ~query:original_query derivations prog_for_building_forest in let build_forest_end = Timer.top () in let () = Logs.app (fun m -> m "Parsing time: %a" Timer.diff (parse_time_end, parse_time_start)) in let () = Logs.app (fun m -> m "Parse forest building time: %a" Timer.diff (build_forest_end, build_forest_start)) in let resumptions = match parse_forest with | [] -> let () = Log.debug (fun m -> m "The shared forest is empty") in SharedForest.SharedForest.Resumptions.empty ~alt_max, [], (term, dist_type) | [ f ] -> let () = Log.debug (fun m -> m "The shared forest is not empty") in let forest = f in let () = Log.debug (fun m -> m "The shared forest is: @[%a@]" (SharedForest.SharedForest.pp_forest Format.pp_print_int) forest) in SharedForest.SharedForest.init ~alt_max (Format.pp_print_int) f, f, (term, dist_type) (* | a::b::tl -> NewSharedForest.SharedForest.init a *) | _ -> failwith "Bug: not fully specified query" in resumptions | Some { prog; magic_programs = None; generated_symbols; _ }, (Lambda.Atom _ as dist_type) | Some { prog; magic_programs = _; generated_symbols; _ }, (Lambda.Atom _ as dist_type) -> let dist_type_image = interpret_type dist_type lex in if dist_type_image <> term_type then let obj_term_type_s = Format.dprintf "%a" (Data_Signature.pp_type lex.object_sig) term_type in let abs_dist_type_s = Format.dprintf "%a" (Data_Signature.pp_type lex.abstract_sig) dist_type in let interpreted_abs_dist_type_s = Format.dprintf "%a" (Data_Signature.pp_type lex.object_sig) dist_type_image in let lex_name = Format.dprintf "%a" pp_lex lex in Errors.(CmdErrors.emit (Cmd_l.TypeMismatch (obj_term_type_s, abs_dist_type_s, interpreted_abs_dist_type_s, lex_name))) else let term = Lambda.normalize ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i lex.object_sig) (Data_Signature.expand_term term lex.object_sig) in Log.info (fun m -> m "Term for the query: %a" (Data_Signature.pp_term lex.object_sig) term); let obj_term = Data_Signature.eta_long_form term dist_type_image lex.object_sig in let obj_princ_type, obj_typing_env = TypeInference.Type.inference obj_term in Log.debug (fun m -> m "Going to set a query for the distinguised type \"%a(%s)\"" (Data_Signature.pp_type lex.abstract_sig) dist_type (Lambda.raw_type_to_string dist_type)); Log.debug (fun m -> m "whose image is \"%a(%s)\"" (Data_Signature.pp_type lex.object_sig) dist_type_image (Lambda.raw_type_to_string dist_type_image)); Log.debug (fun m -> m "resulting in the principle type \"%s\"" (Lambda.raw_type_to_string obj_princ_type)); (* query is the datalog query (compute from the distinguished type) and temp_prog is the program augmented with the extensional database resulting from the term to parse *) let query, temp_prog = Reduction.edb_and_query ~obj_term ~obj_type:obj_princ_type ~obj_typing_env ~dist_type prog ~abs_sig:lex.abstract_sig ~obj_sig:lex.object_sig ~syms:generated_symbols in let parse_time_start = Timer.top () in let _, derivations = Datalog.Program.seminaive temp_prog in let parse_time_end = Timer.top () in let () = Log.debug (fun m -> m "Derivations:@,@[<v>@[%a@]@]" (Datalog.Predicate.pp_facts_from_premises ~with_id:true temp_prog.Datalog.Program.pred_table temp_prog.Datalog.Program.const_table) derivations) in let build_forest_start = Timer.top () in let parse_forest = Datalog.Program.build_forest ~query derivations temp_prog in let build_forest_end = Timer.top () in let () = Logs.app (fun m -> m "Parsing time: %a" Timer.diff (parse_time_end, parse_time_start)) in let () = Logs.app (fun m -> m "Parse forest building time: %a" Timer.diff (build_forest_end, build_forest_start)) in let resumptions = match parse_forest with | [] -> let () = Log.debug (fun m -> m "The shared forest is empty") in SharedForest.SharedForest.Resumptions.empty ~alt_max, [], (term, dist_type) | [ f ] -> let () = Log.debug (fun m -> m "The shared forest is not empty") in let forest = f in let () = Log.debug (fun m -> m "The shared forest is:@[%a@]" (SharedForest.SharedForest.pp_forest Format.pp_print_int) forest) in SharedForest.SharedForest.init ~alt_max (Format.pp_print_int) f, f, (term, dist_type) (* | a::b::tl -> NewSharedForest.SharedForest.init a *) | _ -> failwith "Bug: not fully specified query" in resumptions | Some _, _ -> let () = Logs.warn (fun m -> m "Parsing@ is@ not@ yet@ implemented@ for@ non-atomic@ \ distinguished@ type.") in SharedForest.SharedForest.Resumptions.empty ~alt_max, [], (term, dist_type) let get_analysis (resumptions, initial_forest, object_term) lex = Log.debug (fun m -> m "Trying to get some analysis"); match lex.datalog_prog with | None -> let () = Logs.warn (fun m -> m "Parsing@ is@ not@ yet@ implemented@ for@ non-atomic@ \ distinguished@ type.") in (None, (resumptions, initial_forest, object_term)) | Some { rule_to_cst = rule_id_to_cst; _ } -> ( match SharedForest.SharedForest.resume resumptions with | None, resumptions -> (None, (resumptions, initial_forest, object_term)) | Some (t, weight), resumptions -> let res = Containers.TreeContext.Tree.fold_depth_first ( (fun rule_id -> RuleToCstMap.find rule_id rule_id_to_cst), fun x y -> Lambda.App (x, y) ) t in let () = ParsingLog.info (fun m -> let test = let obj_term, dist_type = object_term in let interpreted_type = Data_Signature.expand_type (interpret_type dist_type lex) lex.object_sig in (* Check that the interpretation of the later is the former *) Lambda.equal ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i lex.object_sig) ~type_of_const:(fun i -> Data_Signature.(expand_type (type_of_constant (snd (id_to_string lex.object_sig i)) lex.object_sig) lex.object_sig)) (obj_term, interpreted_type) (interpret res (Data_Signature.expand_type dist_type lex.abstract_sig) lex) in let () = m "Checking@ that@ the@ interpretation@ of@ the@ parsing@ result@ and@ the@ term@ to@ parse@ are@ the@ same: %B" test in assert test) in ( Some(res, weight ), (resumptions, initial_forest, object_term) )) let is_empty (resumptions, _, _) = SharedForest.SharedForest.Resumptions.is_empty resumptions let get_program lex = match lex.datalog_prog with None -> None | Some { prog = p; _ } -> Some p let check_intentional_predicates lex = if Data_Signature.is_2nd_order lex.abstract_sig then match lex.datalog_prog with | None -> () (*lex *) | Some ({ prog; magic_programs = _; rule_to_cst = _; cst_to_rule = _ ; generated_symbols = _} as _correspondance) -> let _new_ids_to_rules_map = List.fold_left (fun ids_to_rules p_id -> match DatalogPredMap.find_opt p_id ids_to_rules with | Some rules when not (DatalogRule.Rules.is_empty rules) -> ids_to_rules | _ -> let () = Logs.warn (fun m -> m "The@ ACG@ defined@ by@ lexicon@ \"%a\"@ is@ \ second-order,@ but@ the@ abstract@ type@ \"%s\"@ is@ \ never@ the@ resulting@ type@ of@ an@ abstract@ \ constant,@ although@ it@ is@ used@ as@ argument@ \ type@ for@ some@ constant." Utils.lex_pp (let name, _ = lex.name in name) (ASPred.PredIdTable.find_sym_from_id p_id prog.Datalog.Program.pred_table)) in DatalogPredMap.add p_id DatalogRule.Rules.empty ids_to_rules) prog.Datalog.Program.rules prog.Datalog.Program.idb in () else () let check ({ dico = d; abstract_sig = abs; _ } as lex) = let missing_interpretations = Data_Signature.fold (fun e acc -> match Data_Signature.is_declared e abs with | Some s -> ( match Data_Signature.entry_to_data e with | Data_Signature.Type _ -> if Dico.mem (s, Pair.Type) d then acc else s :: acc | Data_Signature.Term _ -> if Dico.mem (s, Pair.Cst) d then acc else s :: acc) | None -> acc) [] abs in match missing_interpretations with | [] -> check_intentional_predicates lex | lst -> emit_missing_inter lex lst let rebuild_interpetation lex = match lex.syntax_dico with | None -> failwith "bug: a rebuild of a lexicon defined as composition was triggered" | Some syntax_dico -> let prog = (* if (Data_Signature.is_2nd_order lex.abstract_sig) && (not lex.non_linear_interpretation) then *) if Data_Signature.is_2nd_order lex.abstract_sig then (* Some (Datalog.Program.empty,RuleToCstMap.empty) *) Some { prog = Datalog.Program.empty; magic_programs = None; rule_to_cst = RuleToCstMap.empty; cst_to_rule = Utils.IntMap.empty; generated_symbols = (Utils.IntMap.empty, Utils.StringSet.empty); } else None in let new_lex = Dico.fold (fun _ abs_syntax_tree lex -> insert abs_syntax_tree lex) syntax_dico { lex with dico = Dico.empty; datalog_prog = prog } in { new_lex with timestamp = Unix.time () } [@@warning "-32"] let compose lex1 lex2 n = let temp_lex = { name = n; dico = Dico.fold (fun key inter acc -> match inter with | Type (l, stype) -> Dico.add key (Type (l, interpret_type stype lex1)) acc | Constant (l, t) -> Dico.add key (Constant ( l, Lambda.normalize ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i lex1.object_sig) (interpret_term t lex1) )) acc) lex2.dico Dico.empty; syntax_dico = None; abstract_sig = lex2.abstract_sig; object_sig = lex1.object_sig; datalog_prog = lex2.datalog_prog; non_linear_interpretation = lex1.non_linear_interpretation || lex2.non_linear_interpretation; build = Compose [fst (name lex1); fst(name lex2)]; timestamp = Unix.time (); is_almost_linear = true; } in rebuild_prog temp_lex let rec interpret_by_lexicons ~interpretation term_or_type lexicons = match lexicons with | [] -> term_or_type | (l,_) :: tl -> interpret_by_lexicons ~interpretation (interpretation term_or_type l) tl let term_interpretation_and_normalization t l = let interpreted_term = interpret_term t l in Lambda.normalize ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i l.object_sig) interpreted_term let compose_lexicons lexicons n = (* lexicons are supposed to be in the interpretation order, i.e. [l1; l2; l3; … ; ln] for ln∘….∘l3∘l2∘l1 *) match lexicons with | [] -> failwith "Bug: composing an empty sequence of lexicons" | (lex,pos) :: tl -> let (last_lex, _), non_linear_interpretation = List.fold_left (fun ((previous_lex,pos1), non_linear_interpretation) (l_lex,pos2) -> match Data_Signature.name previous_lex.object_sig, Data_Signature.name l_lex.abstract_sig with | (l1_name,_), (l2_name, _) when l1_name <> l2_name -> let new_loc = fst pos2, snd pos1 in Errors.(LexiconErrors.emit (Lexicon_l.NotComposable (fst n, fst previous_lex.name, fst l_lex.name)) ~loc:new_loc) | _ -> (l_lex, pos2), non_linear_interpretation || l_lex.non_linear_interpretation) ((lex,pos), lex.non_linear_interpretation) tl in let temp_lex = { name = n; dico = Dico.fold (fun key inter acc -> match inter with | Type (l, stype) -> Dico.add key (Type (l, interpret_by_lexicons ~interpretation:(fun stype l_lex -> interpret_type stype l_lex) stype tl)) acc | Constant (l, t) -> Dico.add key (Constant ( l, (interpret_by_lexicons ~interpretation:term_interpretation_and_normalization t tl) )) acc) lex.dico Dico.empty; syntax_dico = None; abstract_sig = lex.abstract_sig; object_sig = last_lex.object_sig; datalog_prog = lex.datalog_prog; non_linear_interpretation = non_linear_interpretation; build = Compose ((fst (name lex) :: (List.map (fun (l, _) -> fst (name l)) tl))) ; timestamp = Unix.time (); is_almost_linear = true; } in rebuild_prog temp_lex let pp_query lex fmt (term, dist_type) = match (lex.datalog_prog, Data_Signature.expand_type dist_type lex.abstract_sig) with | None, _ -> Logs.warn (fun m -> m "Parsing is not implemented for non 2nd order ACG") | Some { prog; generated_symbols; _ }, (Lambda.Atom _ as dist_type) -> let dist_type_image = interpret_type dist_type lex in let obj_term = Data_Signature.eta_long_form (Lambda.normalize ~id_to_term:(fun i -> Data_Signature.unfold_term_definition i lex.object_sig) (Data_Signature.expand_term term lex.object_sig)) dist_type_image lex.object_sig in let obj_princ_type, obj_typing_env = TypeInference.Type.inference obj_term in let query, temp_prog = Reduction.edb_and_query ~obj_term ~obj_type:obj_princ_type ~obj_typing_env ~dist_type prog ~abs_sig:lex.abstract_sig ~obj_sig:lex.object_sig ~syms:generated_symbols in Format.fprintf fmt "@[Facts:@,@[<v> @[<v>%a@]@]@]@,@[Query:@,@[<v> @[%a?@]@]@]" Datalog.Program.pp_edb temp_prog (DatalogAbstractSyntax.Predicate.pp temp_prog.Datalog.Program.pred_table temp_prog.Datalog.Program.const_table) query | Some _, _ -> Logs.warn (fun m -> m "Parsing is not yet implemented for non atomic distinguished type") let magic lex = match lex.datalog_prog with | None -> lex | Some prog when prog.magic_programs = None && Data_Signature.is_2nd_order lex.abstract_sig -> let rules = prog.prog.Datalog.Program.abstract_rules in let t = Timer.top () in let abs_prog = ASProg. { rules; pred_table = prog.prog.Datalog.Program.pred_table; const_table = prog.prog.Datalog.Program.const_table; i_preds = ASPred.PredIds.of_list prog.prog.Datalog.Program.idb; rule_id_gen = prog.prog.Datalog.Program.rule_id_gen; head_to_rules = ASRule.Rules.fold (fun r acc -> match ASPred.PredIdMap.find_opt r.ASRule.lhs.ASPred.p_id acc with | None -> ASPred.PredIdMap.add r.ASRule.lhs.ASPred.p_id (ASRule.Rules.singleton r) acc | Some ruls -> ASPred.PredIdMap.add r.ASRule.lhs.ASPred.p_id (ASRule.Rules.add r ruls) acc) rules ASPred.PredIdMap.empty; e_pred_to_rules = ASPred.PredIdMap.empty; } in let () = Timer.debug (fun m -> m "@[Converting@ Datalog@ program@ for@ %a@ to@ abstract@ \ progam@ before@ magic@ rewritting@ took: %a@]" pp_lex lex UtilsLib.Timer.elapsed t) in let starting_magic_computation = Timer.top () in let progs = MagicRewriting.Rewriting.rewrite_programs ~msg:(Printf.sprintf "Lexicon '%s'" (fst lex.name)) abs_prog in let ending_magic_computation = Timer.top () in let magic_programs = MagicRewriting.Rewriting.QueryMap.mapi (fun (p_id, bfs) (as_prog, ctx) -> let () = MagicLog.info (fun m -> m "Making magic program for lexicon %s and query %s_%s \ (%d rules)@?" (fst lex.name) (ASPred.PredIdTable.find_sym_from_id p_id prog.prog.Datalog.Program.pred_table) (MagicRewriting.Adornment.to_string bfs) (ASRule.Rules.cardinal as_prog.ASProg.rules)) in let () = MagicLog.debug (fun m -> m "Abstract program (%s) for %s_%s is:@,@[<v>@[%a@]@]" (fst lex.name) (ASPred.PredIdTable.find_sym_from_id p_id prog.prog.Datalog.Program.pred_table) (MagicRewriting.Adornment.to_string bfs) (ASProg.pp ~with_position:false ~with_id:true) as_prog) in (Datalog.Program.make_program as_prog, ctx)) progs in let ending_compile_all_programs = Timer.top () in let () = Timer.debug (fun m -> m "@[<v2>Magic programs for lexicon %a:@,@[<hv>Build time: %a@]@,@[Compile time: %a@]@]" pp_lex lex Timer.diff (ending_magic_computation, starting_magic_computation) Timer.diff (ending_compile_all_programs, ending_magic_computation)) in let prog' = { prog with magic_programs = Some magic_programs } in { lex with datalog_prog = Some prog' } | Some _prog -> lex (* Don't need to rebuild magic programs for a lexicon whose magic program is not set to [None]. A magic programs is set to None whenever the lexicon has been modified through [insert], [compose] or [update] *) let has_magic lex = match lex.datalog_prog with | None -> Unavailable | Some prog when prog.magic_programs = None -> Available_wo_magic | Some _ -> Available_with_magic end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>