package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acgtk-1.5.3.tar.gz
sha256=2743321ae4cc97400856eb503a876cbcbd08435ebc750276399a97481d001d41
md5=04c1e14f98e2c8fd966ef7ef30b38323
doc/src/acgtkLib.acgData/type_system.ml.html
Source file type_system.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
(**************************************************************************) (* *) (* ACG development toolkit *) (* *) (* Copyright 2008-2021 INRIA *) (* *) (* More information on "http://acg.gforge.inria.fr/" *) (* License: CeCILL, see the LICENSE file or "http://www.cecill.info" *) (* Authors: see the AUTHORS file *) (* *) (* *) (* *) (* *) (* $Rev:: $: Revision of last commit *) (* $Author:: $: Author of last commit *) (* $Date:: $: Date of last commit *) (* *) (**************************************************************************) open UtilsLib open Logic.Abstract_syntax open Logic.Lambda let get_location = function | Abstract_syntax.Var (_,l) -> l | Abstract_syntax.Const (_,l) -> l | Abstract_syntax.Abs (_,_,_,l) -> l | Abstract_syntax.LAbs (_,_,_,l) -> l | Abstract_syntax.App (_,_,l) -> l module Log = (val Logs.src_log (Logs.Src.create "ACGtkLib.type_system" ~doc:"logs ACGtkLib type_system events") : Logs.LOG) module type SIG_ACCESS = sig exception Not_found type t val expand_type : Lambda.stype -> t -> Lambda.stype val find_term : string -> t -> Lambda.term *Lambda.stype val type_to_string : Lambda.stype -> t -> string val term_to_string : Lambda.term -> t -> string (* val id_to_string : t -> int -> Abstract_syntax.syntactic_behavior*string *) end module Type_System = struct module Make(Signature:SIG_ACCESS) = struct exception Not_functional_type exception Functional_type of Abstract_syntax.abstraction exception Not_normal_term exception Vacuous_abstraction of (string * Abstract_syntax.location * Abstract_syntax.location) exception Non_empty_linear_context of (string*Abstract_syntax.location) exception Not_linear of (Abstract_syntax.location * Abstract_syntax.location) exception Type_mismatch of (Abstract_syntax.location * Lambda.stype * Lambda.stype) (* let rec expand_type ty sg = match ty with | Lambda.Atom _ -> ty | Lambda.DAtom i -> expand_type (Signature.unfold_type_definition i sg) sg | Lambda.LFun (ty1,ty2) -> Lambda.LFun(expand_type ty1 sg,expand_type ty2 sg) | Lambda.Fun (ty1,ty2) -> Lambda.Fun(expand_type ty1 sg,expand_type ty2 sg) | _ -> failwith "Not yet implemented" *) let decompose_functional_type ty sg = match Signature.expand_type ty sg with | Lambda.LFun (ty1,ty2) -> ty1,ty2,Abstract_syntax.Linear | Lambda.Fun (ty1,ty2) -> ty1,ty2,Abstract_syntax.Non_linear (* | Lambda.DAtom i -> decompose_functional_type (Signature.unfold_type_definition i sg) sg *) | _ -> raise Not_functional_type (* [get_typing x loc typing_env] returns [l,t,e] where [l] is the level of [x] and [t] its type in the typing environment [typing_env] when [x] is a variable located at [loc]. [e] is the new environment where [x] as been marked as used at location [l]. If [x] has been used alread once (this is marked by the [Some l], 3rd projection in the association list), the function raises [Not_linear (l,loc)] where [l] is the location of the former usage of [x]. If [x] is not in the typing environment [typing_env], it raises Not_found *) let get_typing x loc lst = let rec get_typing_aux lst k = match lst with | [] -> raise Not_found | (s,(level,ty,None))::tl when s=x-> k(level,ty,((s,(level,ty,Some loc))::tl)) | (s,(_,_,Some l))::_ when s=x -> raise (Not_linear (l,loc)) | hd::tl -> get_typing_aux tl (fun (level,ty,r) -> k (level,ty,(hd::r))) in get_typing_aux lst (fun (level,ty,env) -> (level,ty,env)) [@@warning "-32"] (* let put_env x l lst = let rec change_env_aux lst k = match lst with | [] -> raise Not_found | (s,_)::tl when s=x -> k ((s,l)::tl) | hd::tl -> change_env_aux tl (fun r -> k (hd::r)) in change_env_aux lst (fun x -> x) let var i = function | Abstract_syntax.Linear -> Lambda.LVar i | Abstract_syntax.Non_linear -> Lambda.Var i *) let print_env (l_env,env,lin) f = let () = Printf.printf "Linear environment:\n%s\n" (Utils.string_of_list "\n" (fun (x,(l,ty,u)) -> Printf.sprintf "%s (%d): %s (%s)" x l (Lambda.type_to_string ty f) (match u with | None -> "Not used" | Some _ -> "Used")) l_env) in let () = Printf.printf "Non linear environment:\n%s\n" (Utils.string_of_list "\n" (fun (x,(l,ty)) -> Printf.sprintf "%s (%d): %s" x l (Lambda.type_to_string ty f) ) env) in Printf.printf "Next usage:\n%s\n" (Utils.string_of_list "\n" (fun (x,ab) -> Printf.sprintf "%s : %s" x (match ab with | Abstract_syntax.Linear -> "Linear" | _ -> "Non Linear")) lin) [@@warning "-32"] type typing_env_content = | Delay of (int -> int -> Abstract_syntax.location -> Lambda.term) | Eval of (int -> int -> Abstract_syntax.location -> (Lambda.term * typing_env_content)) type typing_environment = {linear_level:int; (* The depth of the term with respect to the number of linear abstraction. Starting at 0 *) level:int; (* The depth of the term with respect to the number of non linear abstraction. Starting at 0 *) env : (typing_env_content*Lambda.stype*Abstract_syntax.abstraction) Utils.StringMap.t; wrapper : (Abstract_syntax.location*Lambda.stype*Abstract_syntax.location) option} let remove_lin_context ({env=e;_} as tenv) = {tenv with env=Utils.StringMap.fold (fun k ((_,_,abs) as v) acc -> match abs with | Abstract_syntax.Linear -> acc | Abstract_syntax.Non_linear -> Utils.StringMap.add k v acc) e Utils.StringMap.empty} let insert_lin_var (ty:Lambda.stype) (env:typing_environment) = Eval (fun l_level _ loc -> (* let i = (l_level - 1 - env.linear_level) in let () = Printf.printf "Inserting variable %d - 1 - %d = %d\n%!" l_level env.linear_level i in *) Lambda.LVar (l_level - 1 - env.linear_level), Delay (fun _ _ l -> raise (Not_linear (l,loc)))), ty, Abstract_syntax.Linear let insert_non_lin_var (ty:Lambda.stype) (env:typing_environment) = Delay (fun _ level _ -> Lambda.Var (level - 1 - env.level)), ty, Abstract_syntax.Non_linear let compute (k:typing_env_content) (env:typing_environment) (l:Abstract_syntax.location) = match k with | Delay f -> f env.linear_level env.level l,Delay f | Eval f -> f env.linear_level env.level l let get_binding x map = try Some (Utils.StringMap.find x map) with | Not_found -> None let replace_binding x v map = match v with | None -> Utils.StringMap.remove x map | Some b -> Utils.StringMap.add x b map let typecheck t ty sg = let local_expand ty = Signature.expand_type ty sg in let rec typecheck_aux t ty (tenv:typing_environment) = match t with | Abstract_syntax.Var (x,l) -> (try let f_var,var_type,lin = Utils.StringMap.find x tenv.env in let var,new_f=compute f_var tenv l in match ty with | None -> var, var_type, {tenv with env=Utils.StringMap.add x (new_f,var_type,lin) tenv.env} | Some l_ty when l_ty=local_expand var_type -> var, var_type, {tenv with env=Utils.StringMap.add x (new_f,var_type,lin) tenv.env} | Some l_ty -> raise (Type_mismatch (l,l_ty,var_type)) with | Not_found -> raise (Non_empty_linear_context (x,l))) | Abstract_syntax.Const (x,l) -> (try let l_term,l_type = Signature.find_term x sg in (match ty with | None -> l_term,l_type,tenv | Some l_ty when (local_expand l_type)=l_ty -> l_term,l_type,tenv | Some l_ty -> raise (Type_mismatch (l,l_ty,l_type))) with | Signature.Not_found -> failwith "Bug") | Abstract_syntax.LAbs (x,l_x,u,l_u) -> (match ty with | None -> raise Not_normal_term | Some l_ty -> let b = get_binding x tenv.env in (try let ty1,ty2,lin = decompose_functional_type l_ty sg in match lin with | Abstract_syntax.Linear -> let u_term,_,new_typing_env = typecheck_aux u (Some (local_expand ty2)) {tenv with linear_level=tenv.linear_level+1; env=Utils.StringMap.add x (insert_lin_var ty1 tenv) tenv.env} in let f_var,_,_ = Utils.StringMap.find x new_typing_env.env in (try let _ = compute f_var new_typing_env l_x in (* if the Not_linear exception is not raised, it means the variable was not used in u_term *) raise (Vacuous_abstraction (x,l_x,get_location u)) with | Not_linear _ -> Lambda.LAbs(x,u_term),l_ty,{new_typing_env with env= replace_binding x b new_typing_env.env ; linear_level=tenv.linear_level}) | Abstract_syntax.Non_linear as l -> raise (Functional_type l) with | Not_functional_type | Functional_type Abstract_syntax.Non_linear -> raise (Error.Error (Error.Type_error (Error.Is_Used (Signature.type_to_string l_ty sg,"\"'a -> 'b\" (linear abstraction)" ),l_u))))) | Abstract_syntax.Abs (x,_,u,l_u) -> (match ty with | None -> raise Not_normal_term | Some l_ty -> let b = get_binding x tenv.env in (try let ty1,ty2,lin = decompose_functional_type l_ty sg in match lin with | Abstract_syntax.Non_linear -> let u_term,_,new_typing_env = typecheck_aux u (Some (local_expand ty2)) {tenv with level=tenv.level+1; env=Utils.StringMap.add x (insert_non_lin_var ty1 tenv) tenv.env} in Lambda.Abs(x,u_term),l_ty,{new_typing_env with env= replace_binding x b new_typing_env.env;level=tenv.level} | Abstract_syntax.Linear as l -> raise (Functional_type l) with | Not_functional_type | Functional_type _ -> raise (Error.Error (Error.Type_error (Error.Is_Used (Signature.type_to_string l_ty sg,"\"'a => 'b\" (non-linear abstraction)"),l_u))))) | Abstract_syntax.App (u,v,l) -> let u_term,u_type,new_typing_env = try typecheck_aux u None tenv with | Not_normal_term -> raise (Error.Error (Error.Type_error (Error.Not_normal,l))) in let ty1,ty2,lin = try decompose_functional_type u_type sg with | Not_functional_type -> let u_loc = get_location u in raise (Error.Error (Error.Type_error (Error.Is_Used (Signature.type_to_string u_type sg,"\"'a -> 'b\" or \"'a => 'b\" in order to enable application"),(fst u_loc,snd u_loc)))) in let v_term,_,new_new_typing_env = match lin with | Abstract_syntax.Linear -> typecheck_aux v (Some (local_expand ty1)) new_typing_env | Abstract_syntax.Non_linear -> let non_lin_env = remove_lin_context new_typing_env in (* let () = Printf.printf "Inserting wrapper\n%!" in *) let wrapper = get_location u,u_type,get_location v in try let v_t,v_ty,{wrapper=w;_} = typecheck_aux v (Some (local_expand ty1)) {non_lin_env with wrapper=Some wrapper} in v_t,v_ty,{new_typing_env with wrapper=w} with | Non_empty_linear_context (x,l) -> let func_loc,func_st,v_loc = match tenv.wrapper with | None -> wrapper | Some a -> a in (* let v_loc = get_location v in*) raise (Error.Error (Error.Type_error (Error.Non_empty_context (x,l,func_loc,Signature.type_to_string func_st sg),v_loc))) in match ty with | None -> Lambda.App (u_term,v_term),ty2,new_new_typing_env | Some l_ty when l_ty=local_expand ty2 -> Lambda.App (u_term,v_term),l_ty,new_new_typing_env | Some l_ty -> raise (Type_mismatch (l,l_ty,ty2)) in try let t_term,t_type,(_:typing_environment) = typecheck_aux t (Some (local_expand ty)) {linear_level=0;level=0;env=Utils.StringMap.empty;wrapper=None} in Log.debug (fun m -> m "Type-checked %s : %s" (Signature.term_to_string t_term sg ) (Signature.type_to_string t_type sg )); Log.debug (fun m -> m "Type-checked %s : %s" (Lambda.raw_to_string t_term ) (Lambda.raw_type_to_string t_type )); Log.debug (fun m -> m "Type-checked %s : %s" (Lambda.raw_to_caml t_term ) (Lambda.raw_type_to_caml t_type )); t_term with | Type_mismatch ((p1,p2),t1,t2) -> raise (Error.Error (Error.Type_error (Error.Is_Used (Signature.type_to_string t1 sg,Printf.sprintf "\"%s\"" (Signature.type_to_string t2 sg)),(p1,p2)))) | Not_linear ((s1,e1),(s2,e2)) -> raise (Error.Error (Error.Type_error (Error.Two_occurrences_of_linear_variable (s2,e2),(s1,e1)))) | Vacuous_abstraction (x,l1,l2) -> raise (Error.Error (Error.Type_error (Error.Vacuous_abstraction (x,l2),l1))) end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>