package OCanren-ppx
Implementation of miniKanren relational (logic) EDSL: PPX extensions
Install
Dune Dependency
Authors
Maintainers
Sources
0.3.0.tar.gz
sha256=eaf9624bbdbae8050eb43a48c0e79e97160b83b6f65a543ee1beca4c9f4ff4b2
sha512=e55dd7a3026b1dedcd37f55181059dfa44ad6976d241a1199246ee3c1684dcfdf1ae0c1da32165b5b2eb5748cfc57c906a0f0ebab56d03035a5bb87187a63cf7
doc/src/ppx_fresh/ppx_fresh.ml.html
Source file ppx_fresh.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
(* * OCanren. PPX suntax extensions. * Copyright (C) 2015-2019 * Dmitri Boulytchev, Dmitry Kosarev, Alexey Syomin, Evgeny Moiseenko * St.Petersburg State University, JetBrains Research * * This software is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License version 2, as published by the Free Software Foundation. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Library General Public License version 2 for more details * (enclosed in the file COPYING). *) (* Performs two minikanren-specific macro expansions: * 1) fresh (x1 ... xm) e1 ... en * to * Fresh.numeral (fun x1 ... xm -> e1 &&& ... &&& en) * * 2) TODO: write about defer *) open Base open Ppxlib open Ppxlib.Ast_helper let is_state_pattern pat = match pat.ppat_desc with | Ppat_var v when String.equal v.txt "st" || String.equal v.txt "state" -> Some v.txt | _ -> None let classify_name ~f e = match e.pexp_desc with | Pexp_ident i when f i.txt -> true | _ -> false let need_insert_fname ~name e = classify_name e ~f:(Stdlib.(=) (Lident name)) (* match e.pexp_desc with | Pexp_ident i when i.txt = Lident name -> true | _ -> false *) let is_defer = need_insert_fname ~name:"defer" let is_conde = need_insert_fname ~name:"conde" let is_fresh = need_insert_fname ~name:"fresh" let is_call_fresh = need_insert_fname ~name:"call_fresh" let is_unif = classify_name ~f:(function | Lident s -> (String.length s >=3) && (String.equal (String.sub s ~pos:0 ~len:3) "===") | _ -> false ) let is_conj = need_insert_fname ~name:"conj" let is_conj_list = need_insert_fname ~name:"?&" let is_disj e = need_insert_fname ~name:"disj" e || need_insert_fname ~name:"|||" e (* let rec walkthrough ~fname (expr: expression) = let add_fname () = [%expr [%e Ast_helper.Exp.constant (Pconst_string (fname,None))] <=> [%e expr] ] in match expr.pexp_desc with | Pexp_fun (_label, _opt, pat, e2) -> begin match is_state_pattern pat with | None -> { expr with pexp_desc = Pexp_fun (_label, _opt, pat, walkthrough ~fname e2) } | Some argname -> (* printf "found good function with statearg '%s'\n%!" argname; *) let new_body = [%expr let () = Printf.printf "entering '%s'\n%!" [%e Ast_helper.Exp.constant (Pconst_string (fname,None))] in let ans = [%e e2] in let () = Printf.printf "leaving '%s'\n%!" [%e Ast_helper.Exp.constant (Pconst_string (fname,None))] in ans ] in { expr with pexp_desc= Pexp_fun (_label, _opt, pat, new_body) } end | Pexp_apply (e,_) when is_call_fresh e -> add_fname () | Pexp_apply (e,_) when is_disj e -> add_fname () | Pexp_apply (e,_) when is_conj e -> add_fname () | _ -> expr let map_value_binding (vb : value_binding) = match vb.pvb_pat.ppat_desc with | Ppat_var name -> let fname = name.txt in { vb with pvb_expr = walkthrough ~fname vb.pvb_expr } | _ -> vb let smart_logger = { default_mapper with structure_item = fun mapper sitem -> match sitem.pstr_desc with | Pstr_value (_rec, vbs) -> { sitem with pstr_desc = Pstr_value (_rec, List.map vbs ~f:map_value_binding) } | x -> default_mapper.structure_item mapper sitem } *) let option_map ~f = function Some x -> Some (f x) | None -> None let option_bind ~f = function Some x -> f x | None -> None exception Not_an_ident let reconstruct_args e = let open Longident in let are_all_idents (xs: (_*expression) list) = try Some (List.map xs ~f:(fun (_,e) -> match e.pexp_desc with | Pexp_ident {txt=(Longident.Lident i);_} -> i | _ -> raise Not_an_ident)) with Not_an_ident -> None in match e.pexp_desc with | Pexp_apply ({pexp_desc=Pexp_ident {txt=Longident.Lident arg1; _}}, ys) -> (* fresh (var1 var2 var3) body *) option_map (are_all_idents ys) ~f:(fun xs -> arg1::xs ) (* no fresh variables: just for geting rid of &&& *) | Pexp_construct ({ txt=Lident "()" }, None) -> Some [] (* [fresh arg0 body] -- single fresh variable *) | Pexp_ident {txt=Lident arg1; _} -> Some [arg1] | _ -> None let list_fold ~f ~initer xs = match xs with | [] -> failwith "bad argument" | start::xs -> List.fold ~init:(initer start) ~f xs let list_fold_right0 ~f ~initer xs = let rec helper = function | [] -> failwith "bad_argument" | x::xs -> list_fold ~initer ~f:(fun acc x -> f x acc) (x::xs) in helper (List.rev xs) let my_list ~loc es = List.fold_right ~init:[%expr []] es ~f:(fun x acc -> [%expr [%e x] :: [%e acc]]) let parse_to_list alist = let rec helper acc ele = match ele.pexp_desc with | Pexp_construct ({txt=Lident "[]"}, None ) -> acc | Pexp_construct ({txt=Lident "::"}, Some {pexp_desc=Pexp_tuple [y1;y2]; _}) -> helper (y1::acc) y2 | x -> [ele] in List.rev @@ helper [] alist let mapper = object(self) inherit Ast_traverse.map as super method! expression e = let loc = e.pexp_loc in match e.pexp_desc with | Pexp_apply (_,[]) -> e | Pexp_apply (e1,(_,alist)::args) when is_conj_list e1 -> let clauses : expression list = parse_to_list alist in let ans = list_fold_right0 clauses ~initer:(fun x -> x) ~f:(fun x acc -> [%expr [%e x] &&& [%e acc]]) in super#expression ans | Pexp_apply (e1,(_,alist)::otherargs) when is_conde e1 -> begin [%expr conde [%e self#expression alist ]] end | Pexp_apply (e1,[args]) when is_fresh e1 -> (* bad syntax -- no body*) e | Pexp_apply (e1, (Nolabel,args) :: body) when is_fresh e1 -> begin assert (List.length body > 0); let body = List.map ~f:snd body in let new_body : expression = match body with | [] -> assert false | [body] -> self#expression body | body -> let xs = List.map ~f:self#expression body in [%expr ?& [%e my_list ~loc xs ] ] in match reconstruct_args args with | Some (xs: string list) -> let ans = List.fold_right xs ~f:(fun ident acc -> [%expr Fresh.one (fun [%p Pat.var ~loc (Ast_builder.Default.Located.mk ident ~loc) ] -> [%e acc]) ] ) ~init:[%expr delay (fun () -> [%e new_body ])] in ans | None -> Caml.Format.eprintf "Can't reconstruct args of 'fresh'"; {e with pexp_desc=Pexp_apply (e1,[Nolabel, new_body]) } end | Pexp_apply (d, [(_,body)]) when is_defer d -> let ans = [%expr delay (fun () -> [%e self#expression body])] in ans | Pexp_apply (d, body) when is_unif d -> (* let loc_str = Caml.Format.asprintf "%a" Selected_ast.Ast.Location.print_compact e.pexp_loc; in let body = (Labelled "loc", Exp.constant (Pconst_string (loc_str,None))) :: body in *) Exp.apply ~loc:e.pexp_loc d body | Pexp_apply (e, xs) -> let ans = Pexp_apply (self#expression e, List.map ~f:(fun (lbl,e) -> (lbl, self#expression e)) xs ) in let ans = {e with pexp_desc = ans} in ans | Pexp_fun (l,opt,pat,e) -> { e with pexp_desc = Pexp_fun(l, opt, pat, self#expression e) } | Pexp_construct (_, None) -> e | Pexp_construct (id, Some e1) -> { e with pexp_desc = Pexp_construct (id, Some (self#expression e1)) } (* kind of default mapping below *) | Pexp_constant _ | Pexp_ident _ -> e | Pexp_variant (l, eopt) -> let eopt = option_map eopt ~f:self#expression in { e with pexp_desc = Pexp_variant (l, eopt) } | Pexp_record (xs, o) -> let o = option_map o ~f:self#expression in let xs = List.map xs ~f:(fun (s, e) -> (s, self#expression e)) in { e with pexp_desc = Pexp_record (xs, o) } | Pexp_field (e, lident) -> let e = self#expression e in { e with pexp_desc = Pexp_field (e, lident) } | Pexp_setfield (l, lab, r) -> let l = self#expression l in let r = self#expression r in { e with pexp_desc = Pexp_setfield (l, lab, r) } | Pexp_array es -> { e with pexp_desc=Pexp_array (List.map ~f:self#expression es) } | Pexp_ifthenelse (s, th, el) -> let s = self#expression s in let th = self#expression th in let el = option_map el ~f:self#expression in { e with pexp_desc = Pexp_ifthenelse (s, th, el) } | Pexp_sequence (e1, e2) -> { e with pexp_desc = Pexp_sequence (self#expression e1, self#expression e2) } | Pexp_tuple es -> { e with pexp_desc=Pexp_tuple (List.map ~f:self#expression es) } | Pexp_let (_recflag, vbs,where_expr) -> let vbs_new = List.map vbs ~f:(fun vb -> {vb with pvb_expr=(self#expression vb.pvb_expr)}) in { e with pexp_desc = Pexp_let(_recflag, vbs_new, self#expression where_expr) } | Pexp_while (e1, e2) -> let e1 = self#expression e1 in let e2 = self#expression e2 in { e with pexp_desc = Pexp_while (e1, e2) } | Pexp_for (p, e1, e2, flg, e3) -> let e1 = self#expression e1 in let e2 = self#expression e2 in let e3 = self#expression e3 in { e with pexp_desc = Pexp_for (p, e1, e2, flg, e3) } | Pexp_constraint (ee,t) -> { e with pexp_desc = Pexp_constraint(self#expression ee, t) } | Pexp_coerce (expr, t1, t2) -> let expr = self#expression expr in { e with pexp_desc = Pexp_coerce (expr, t1, t2) } | Pexp_send (e, lab) -> let e = self#expression e in { e with pexp_desc = Pexp_send (e, lab) } | Pexp_new _ -> e | Pexp_setinstvar (l, body) -> let body = self#expression body in { e with pexp_desc = Pexp_setinstvar (l, body) } | Pexp_override es -> let es = List.map es ~f:(fun (l,e) -> (l, self#expression e)) in { e with pexp_desc = Pexp_override es } | Pexp_letmodule (name, me, body) -> { e with pexp_desc = Pexp_letmodule (name, self#module_expr me, self#expression body) } | Pexp_letexception (ec, e1) -> let e1 = self#expression e1 in { e with pexp_desc = Pexp_letexception (ec, e1) } | Pexp_assert e -> { e with pexp_desc = Pexp_assert (self#expression e) } | Pexp_lazy e1 -> let e1 = self#expression e1 in { e with pexp_desc = Pexp_lazy e1 } | Pexp_poly (e1,t) -> let e1 = self#expression e1 in { e with pexp_desc = Pexp_poly (e1,t) } | Pexp_newtype (name, ee) -> { e with pexp_desc=Pexp_newtype(name, self#expression ee) } | Pexp_function cases -> { e with pexp_desc = Pexp_function (List.map ~f:self#case cases) } | Pexp_match (s, cases) -> let scru = self#expression s in { e with pexp_desc = Pexp_match (scru, List.map ~f:self#case cases) } | Pexp_try (s, cases) -> let scru = self#expression s in { e with pexp_desc = Pexp_try (scru, List.map ~f:self#case cases) } | Pexp_object _ | Pexp_unreachable -> e | Pexp_open (_od, ee) -> { e with pexp_desc=Pexp_open (_od, self#expression ee) } | Pexp_letop _ | Pexp_extension _ | Pexp_pack _ -> e (* | _ -> Caml.Format.printf "%a\n%a\n%!" Location.print loc Pprintast.expression e; assert false*) end let () = Ppxlib.Driver.register_transformation ~impl:mapper#structure "pa_minikanren"
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>