package OCADml
Types and functions for building CAD packages in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
OCADml-0.6.0.tbz
sha256=2d93cd5f2a41c6c0a183c02ac93ed8c4113fbc42d5557c769adbdc30c6421049
sha512=a9450c05bb1b798a70655f76ae04e8a9c46cde0f255687959f1639d9691cd3822e52065014d8cc5d4bd6229057a8036c28d917afdadb283a397fc823cac1fd30
doc/src/OCADml/math.ml.html
Source file math.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
let deg_of_rad r = 180.0 *. r /. Float.pi let rad_of_deg d = d *. Float.pi /. 180. let sign a = Float.(of_int @@ compare a 0.) let clamp ~min ~max a = if a < min then min else if a > max then max else a let lerp a b u = if u = 0. then a else if u = 1. then b else ((1. -. u) *. a) +. (u *. b) let lerpn ?(endpoint = true) a b n = let d = Float.of_int @@ if endpoint then Int.max 1 (n - 1) else n in List.init n (fun i -> let u = Float.of_int i /. d in lerp a b u ) let quant ~q v = Float.floor ((v /. q) +. 0.5) *. q let quant_down ~q v = Float.floor (v /. q) *. q let quant_up ~q v = Float.ceil (v /. q) *. q let approx ?(eps = Util.epsilon) a b = not (Int.equal Float.(compare (abs (a -. b)) eps) 1) let law_of_cosines a b c = Float.acos @@ clamp ~min:(-1.) ~max:1. (((a *. a) +. (b *. b) -. (c *. c)) /. (2. *. a *. b)) let posmod a m = ((a mod m) + m) mod m let mat_dims m = let n_rows = Array.length m in let n_cols = if n_rows = 0 then 0 else Array.length m.(0) in if Array.for_all (fun c -> Array.length c = n_cols) m then n_rows, n_cols else invalid_arg "mat_dims: Matrix has ragged rows." let matmul a = let a_rows, a_cols = mat_dims a in fun b -> let b_rows, b_cols = mat_dims b in if a_cols <> b_rows then invalid_arg (Printf.sprintf "matmul: Inner dims do not match (%i x %i)" a_cols b_rows); let out = Array.make_matrix a_rows b_cols 0. in for i = 0 to a_rows - 1 do for j = 0 to b_cols - 1 do for k = 0 to b_rows - 1 do out.(i).(j) <- out.(i).(j) +. (a.(i).(k) *. b.(k).(j)) done done done; out let transpose a = let n_rows, n_cols = mat_dims a in let m = Array.make_matrix n_cols n_rows a.(0).(0) in for i = 0 to n_rows - 1 do for j = 0 to n_cols - 1 do m.(j).(i) <- a.(i).(j) done done; m (* Removes the leading zero terms of a polynomial. *) let poly_trim_head p = let i = ref 0 and first = ref None and len = Array.length p in while Option.is_none !first && !i < len do if p.(!i) = 0. then incr i else first := Some !i done; match !first with | Some first -> Array.init (len - first) (fun i -> p.(i + first)) | None -> [| 0. |] (* Removes the leading and trailing zero terms of a polynomial. *) let poly_trim_head_tail p = let len = Array.length p in let i = ref 0 and j = ref (len - 1) and first = ref None and last = ref None in while (Option.is_none !first || Option.is_none !last) && !i < len do if Option.is_none !first && p.(!i) <> 0. then first := Some !i else incr i; if Option.is_none !last && p.(!j) <> 0. then last := Some !j else decr j done; match !first, !last with | Some first, Some last -> Array.init (last - first + 1) (fun i -> p.(i + first)) | _ -> [| 0. |] (* Evaluates the real polynomial p at the real input value z. *) let polynomial_real p z = let f total x = (total *. z) +. x in Array.fold_left f 0. (poly_trim_head p) (* Evaluates the real polynomial p at the complex input value z. *) let polynomial_complex p z = let f total re = Complex.(add (mul total z) { re; im = 0. }) in Array.fold_left f Complex.zero (poly_trim_head p) (* Returns all complex roots of the real polynomial p. Adapted from: https://github.com/revarbat/BOSL2/blob/master/math.scad#L1418 *) let poly_roots ?(tol = 1e-14) p = let p = poly_trim_head_tail p in if Array.for_all (( = ) 0.) p then invalid_arg "Input polynomial cannot be zero."; let n = Array.length p - 1 in (* polynomial degree *) if n = 0 then [||], [||] else if n = 1 then [| Complex.{ re = -.p.(1) /. p.(0); im = 0. } |], [| 0. |] else ( let p0 = p.(0) and p1 = p.(1) in let p_deriv = Array.init n (fun i -> p.(i) *. Float.of_int (n - i)) in let s = Array.init (n + 1) (fun i -> Float.abs p.(i) *. ((4. *. Float.of_int (n - i)) +. 1.) ) and beta = -.p1 /. p0 /. Float.of_int n in let z = let r = let poly = polynomial_real p beta in 1. +. Float.(pow (abs (poly /. p0)) (1. /. of_int n)) in let f i = let angle = Float.((pi *. 2. *. (of_int i /. of_int n)) +. (1.5 /. of_int n)) in Complex.( add { re = beta; im = 0. } Float.{ re = cos angle *. r; im = sin angle *. r } ) in Array.init n f in let i = ref 0 and complete = Array.make n false and n_complete = ref 0 and z_diff = ref Complex.zero in while !n_complete < n && !i < 45 do for j = 0 to n - 1 do if not complete.(j) then ( let sval = tol *. polynomial_real s (Complex.norm z.(j)) and p_of_z = polynomial_complex p z.(j) in if Complex.norm p_of_z <= sval then ( complete.(j) <- true; incr n_complete ) else ( let newton = Complex.div p_of_z (polynomial_complex p_deriv z.(j)) in for k = 0 to n - 1 do if j <> k then z_diff := Complex.(add !z_diff (div one (sub z.(j) z.(k)))) done; let w = Complex.(div newton (sub one (mul newton !z_diff))) in z_diff := Complex.zero; z.(j) <- Complex.sub z.(j) w ) ) done; incr i done; if !n_complete < n then failwith "poly_roots exceeded iteration limit."; let error = let f xi = let num = Complex.norm (polynomial_complex p xi) +. (tol *. polynomial_real s (Complex.norm xi)) and denom = Float.abs ( Complex.norm (polynomial_complex p_deriv xi) -. (tol *. polynomial_real s (Complex.norm xi)) ) in Float.of_int n *. num /. denom in Array.map f z in z, error ) let real_roots ?eps ?(tol = 1e-14) p = let p = poly_trim_head p in let roots, errors = poly_roots ~tol p in let f = match eps with | Some eps -> fun (_, acc) (Complex.{ re; im } as z) -> if Float.abs im /. (1. +. Complex.norm z) < eps then 0, re :: acc else 0, acc | None -> fun (i, acc) Complex.{ re; im } -> if Float.abs im <= errors.(i) then i + 1, re :: acc else i + 1, acc in let _, l = Array.fold_left f (0, []) roots in Util.array_of_list_rev l let bisection ?(max_iter = 100) ?(tolerance = 0.001) ~lower ~upper f = let rec loop i a b = let c = (a +. b) /. 2. in if (b -. a) /. 2. < tolerance then c else ( let res = f c in if res = 0. then c else if i < max_iter then if Float.(Int.equal (compare 0. res) (compare 0. (f a))) then loop (i + 1) c b else loop (i + 1) a c else failwith "Maximum iterations reached in bisection search." ) in loop 0 lower upper
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>