Extension points for OCaml

Leo White

September 24, 2013

Camlp4

A preprocessor for OCaml:
» Supports arbitrary extensions to the language's grammar

» Powerful system that has enabled some great extensions for
OCaml

Camlp4 Examples

Type-conv extensions:

type t = {
foo: int with default(42);
bar: float

} with sexp

let x = sexp_of_t { foo = 3; bar = 5.0 }

Camlp4 Examples

UlLex:
let lex = lexer

['a’="z’ 1000—1500] 65 —> Foo
| ['a’ = 'z']x — Bar

Camlp4 Examples

COW:

let world = "world” in
let html =
<:html< <hl>Hello $str:world$!</hl> >>

Camlp4

Camlp4 is very complex. This complexity comes from its support
for arbitrary extensions to the OCaml syntax. However, most of its
common uses don't require this ability.

Can we provide a simpler alternative?

AST transformers

Rather than write extensions as preprocessors, write them as AST
transformers.

The extension is given an AST by the compiler, transforms it, and
returns the new AST to the compiler.

This can be done in OCaml 4.01 using the -ppx option.

Extension points: Attributes

sexplib

type t = {
foo: int; [@default 42]
bar: float

} [@@sexp]

Extension points: Attributes

attribute = [@ id struct_item]
| [@id ? pattern]
| [@id : type_expr]

Extension points: Extensions

sedlex

[%lexer
match foo with
(Range('a','z")|Range(1000, 1500)), 65 —> Foo
| Star (Range('a','z')) —> Bar
]

Alternative string syntax

ulex

[%lexer
match foo with
(] ['a’—'z’ 1000—1500] 65 |} —> Foo
| {| ['a" = "z'"] |} —> Bar
]

COW

let world = "world” in
let html = [%html {|<hl>Hello $str:world$!</hl>|}]

Short-cut syntax

match%lexer foo with
{| ['a'—'z' 1000—1500] 65 |} —> Foo
| {| ['a" = 'z"]* |} — Bar

Short-cut syntax

Without short-cut

[%lwt let x = f () in
[%lwt let y =g () in
expr |]

With short-cut

let%lwt x = f
let%lwt y =g () in
expr

Status

These additional syntaxes have been implemented by Alain Frisch
and merged onto trunk.

Thoughts and feedback very welcome (wg-camlp4@lists.ocaml.org).

