Core_bench: micro-benchmarking for OCaml

Christopher S. Hardin and Roshan P. James
Jane Street

September 24, 2013, OUD Workshop

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Overview

Micro-benchmarking

@ Precise measurement is essential for writing performance
sensitive code.

@ Objective: Measure the execution cost of functions that are
relatively cheap.
e Functions with execution times on the order of nanoseconds to
a tens or hundreds of milli-seconds.
e A 3.4 GHz cpu runs several simple instructions per nanosecond.

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Overview

Micro-benchmarking : Timing

let t1 Time.now () in
f O;

let t2 = Time.now () in
report (t2 - t1)

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Overview

Micro-benchmarking : Timing

let t1 = Time.now () in
f O;
let t2 = Time.now () in

report (t2 - t1)

e Time.now is often too imprecise (about 1 microsec).

@ Asking for current time also takes time.

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Overview

Micro-benchmarking : Batch sizes

let t1 = Time.now () in
i=1 batch_size
f O;
let t2 = Time.now () in
report batch_size (t2 - t1)

Christopher S. Hardin and Roshan P. James

Core_bench: micro-benchmarking for OCaml

Overview

Micro-benchmarking : Batch sizes

let t1 = Time.now () in
i=1 batch_size
f O;
let t2 = Time.now () in
report batch_size (t2 - t1)

@ Compute a batch size to account for the timer.
@ Criterion for Haskell.

@ Mean, Std deviation to account for system noise.

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Overview

Micro-benchmarking : Noise

@ System noise from other processes and OS activity.
@ More importantly, there are delayed costs due to GC.

@ Variance in execution times is influenced by batch size.

5e+07
—~ 4e+07 - o
£ L
— 3e+07 - J o
(O] £
E 2e+07 .
S ot
S 1e+07 e .
= = ‘,,,...» | | !
0 2000 4000 6000 8000 10000

batch size

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation

Core_bench : Linear regression

@ Treats micro-benchmarking as a linear regression.
e Simple case: fit of execution time to batch size.
@ Data of larger batch sizes have smaller %-error.
e Geometric sampling of batch sizes to get a better linear fit.

7000
6000 - -
5000 - -
4000 -
3000 - -
2000 - -
1000 - -

0 | | |
0 le+06

batch size

runtime (ms)

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation

Core_bench : Linear regression

@ No need to estimate the clock and other constant errors:
o Constant overheads are accounted for in the y-intercept.

@ Predict other costs in the same way.

e Estimate memory allocations and promotions using batch size.
e Estimate garbage collection using batch size.

@ User specifies how much sampling time is allowed.

o More data allows better estimates.
e Error estimation, goodness of fit by

@ Bootstrapping
o R?

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation

Example source (basic)

Core.Std
Core_bench.Std

let t1 = Bench.Test.create “name:"id" (fun () -> ()

let t2 = Bench.Test.create "name:"Time.now"
(fun () -> ignore (Time.now ()))

let t3 = Bench.Test.create “name:"Array.create300"
(fun () -> ignore (Array.create “len:300 0))

let () = Command.run (Bench.make_command [t1; t2; t3])

Name Time/Run Minor Major
id 3.08

Time.now 843 2.00
Array.create300 3_971 301

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation

Some functions have strange execution times

let benchmark = Bench.Test.create “name:"List.init"
(fun () -> ignore(List.init 100_000 ~f:id))

700 .

observed —
600 1-predictor model

500

runtime (ms)
e
%
=
jAN—

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation
Multiple predictors

700 .

observed runtime
600 L runs |
promoted words
compactions

500
400
300
200
100

0

milliseconds

W A |
| ‘ \“I‘\ \‘ \W \H\ \“
0 50 100 150 200 250 300 350 400 450

batch size

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation
Multiple predictors: fit

Using runs, compactions, promoted as predictors

700 : | |
observed —
600 | 1-predictor model ———]
3-predictor model —
_ 500)
E 400 | |
(]
E 300 | |
c
o |
= 200 |)
100 |)
O | | | |
0 100 200 300 400 500

batch size

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation
Runtime cost decomposition example

X = [batch size x, minor GCs, compactions|, y = runtime (ns).
Solve X3 =y, xv = X. Suppose we get

1.06 x 10
B = [1.04 x 10° y=[1 0.00299 0.00149]
2.25 x 10°

Then (predicted) runtime is

ns/mGC mGCs/run ns/cmp cmps/run
P A e e e
7B = (1.06 x 10%)(1) 4 (1.04 x 10°) (0.00299) + (2.25 x 10°)(0.00149)
nominal minor GC cost compaction cost

= 10.6us + 3.1us + 3.4us = 17.4us

(Note: Just solving xm = y gives 17.4us.)

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation

Conclusion and Future Work

@ opam install core_bench

@ Expose more predictors

e Measure the effect of live words on performance.
e Counters for major collection work per minor GC.

@ Accuracy of results
e Ordinary least-squares is susceptible to outliers. Incorporate
the fact that measurement error is heavy-tailed (on the
positive side).
e Automatically select execution time based on error.

@ Automatically pick predictors from a set.

Christopher S. Hardin and Roshan P. James Core_bench: micro-benchmarking for OCaml

Implementation

Thank you.

Christopher S. Hardin and Roshan P. James nch: micro-benc king for OCaml

	Overview
	Implementation

