The Frenetic
Network Controller

Arjun Guha, Nate Foster, Mark Reitblatt, Cole Schlesinger,

and others:
www.github.com/frenetic-lang/frenetic/contributors

UMass Amherst Cornell Princeton

http://www.github.com/frenetic-lang/frenetic
http://www.github.com/frenetic-lang/frenetic

4 networks today

4\5 networks today

bl

=
7

=
]
| / switches

4\5 networks today

S

=
7

=
L]
switches

=

hosts

T—
“ T —
4
I

N

—
“ - —
#
y

Servers

networks today

]
switches

g routers
< <

hosts

Servers

networks today

y._—
-’ : firewalls
switches L

=

routers
hosts

Servers

networks today

y._—
-’ E ﬁrewa“S
switches L

/

!LIQ

load balancers | routers d
hosts

Serve S

networks today

y._—
-’ E ﬁrewa“S
switches L

/

=

load balancels | routers d
hosts

E , servers

networks today

y._—
-’ E firewalls
switches L

/

b= =

load balanc# | routers
hosts
wireless authentication
server

servers

Ul

routers
a5

wireless authentication
server

@ = N
™ wireless access points g
s . servers

.
.
.
s ...
| o ®

Recent Network Outages

. We discovered a misconfiguration on this
glthub pair of switches that caused what's called a

SOCIAL CODING "bridge loop”in the network.

A network change was [...] executed
incorrectly [...] more “stuck”volumes and added amazon
more requests to the re-mirroring storm web services

Service outage was due to a series of internal

%GO Daddy% network events that corrupted router data tables

Experienced a network connectivity issue [...] united -

interrupted the airline’s flight departures,

airport processing and reservations systems Airlines A‘ﬁ,’f L.

http://en.wikipedia.org/wiki/Switching_loop
http://en.wikipedia.org/wiki/Switching_loop

software-defined
networking (SDN)

software-defined
networking (SDN)

Key Features and Advantages of SDN

» Standardized, programmable network devices
easy to deploy new in-network features

Key Features and Advantages of SDN

» Standardized, programmable network devices
easy to deploy new in-network features

e Logically centralized controller (beefy server)
enables reasoning about whole-network behavior

f:switch X port X packet = { (port;,packet;), ..., (portn, packet,) }

GOugle Microsoft: < wrrcomucon

OPEN NETWORKING el YAaHoO!
FOUNDATION

Lots of SDN Interest

» By startups and established players
can buy commercial hardware and software

200+ attendees at HotSDN 13
« Six (out of 40) papers at SIGCOMM’13 on SDN

C OpenFlow industry-standard SDN protocol

C ‘OpenFlow industry-standard SDN protocol

Project ’
Java giordiiaht

C OpenFlow industry-standard SDN protocol

Project ’
Java FloJodlight

sow (-

POX OX '

Python

C OpenFlow industry-standard SDN protocol

Project ’
Java FloJodlight

sew (-

POX

Python

W= nettle-openflow-0.2.0: OpenFlow protocol messages, binary formats, and servers. | hackageDB | Style ~

The nettle-openflow package
a S e This package provides data types that model the messages of the OpenFlow protocol, functions that implement serialization and

deserialization between these data types and their binary representations in the protocol, and an efficient OpenFlow server. The
library is under active development.

C OpenFlow industry-standard SDN protocol

Project ’
Java i dliaht

sem (++00C

POX nox

Python

W= nettle-openflow-0.2.0: OpenFlow protocol messages, binary formats, and servers.

k B e ~
The nettle-openﬂow package
a S e pac ge provides d model the messages of the OpenFlow protocol, functions that i ment serialization and

bewee he da ype s and their binary representations in the protocol, and an effic etOpenFIowserver.The
nder e developm

OCam| frenetic >

|0

Example

,/
,2 Controller

Port T Port 2

Host 1 |]

Example

let packet in (sw : switchId) (xid : xid) (pktIn : packetIn) : unit =
let actions =
if pktIn.port = 1 then
[Output (PhysicalPort 2)’
else
[Output (PhysicalPort 1)] in
send _packet out sw 01
{ output payload = pktIn.input payload;
port id = None;
apply actions = actions }

,/
,2° Controller

Port 1 Port 2

Example

let packet in (sw : switchId) (xid : xid) (pktIn : packetln)
let pk = parse payload pktIn.input payload in
let actions =
if Packet.dlTyp pk = 0x800 && Packet.nwProto = 6 &&
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else 1f pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 0l
{ output _payload = pktIn.input payload;
port _id = None;
apply actions = actions }

’

: unit

’
,2° Controller

Port 1 Port 2

Host 1 12

Example

let packet in (sw : switchId) (xid : xid) (pktIn : packetln)
let pk = parse payload pktIn.input payload in
let actions =
if Packet.dlTyp pk = 0x800 && Packet.nwProto = 6 &&
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else 1f pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 0l
{ output _payload = pktIn.input payload;
port _id = None;
apply actions = actions }

: unit =

Example

let packet in (sw : switchId) (xid : xid) (pktIn : packetIn) : unit =
let pk = parse payload pktIn.input payload in
let actions =
if Packet.dlTyp pk = 0x800 && PacketT: a_ KK
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else 1f pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 0l
{ output _payload = pktIn.input payload;
port _id = None;
apply actions = actions }

— Generic packet
parser

Example

let packet in (sw : switchId) (xid : xid) (pktIn : packetIn) : unit =
let pk = parse payload pktIn.input payload in
let actions =
if Packet.dlTyp pk = 0x800 && PacketT: a_&K{
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else 1f pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 0l
{ output payload = pktIn.i
port _id = None;
apply actions = actions }

— Generic packet
parser

t payload;

OpenFlow
protocol parser

Example

let packet in (sw : switchId) (xid : xid) (pktIn : packetIn) : unit =
let pk = parse payload pktIn.input payload in
let actions =
if Packet.dlTyp pk = 0x800 && PacketT: a_&K{
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else 1f pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
nd _packet out sw 0l
output payload = pktlIn.i
port _id = None;
pply actions = actions }

— Generic packet
parser

S

t payload;

OpenFlow
protocol parser

Runtime system to
manage connections to
switches

ocaml-packet

ocaml-packet

» Serialization / deserialization for several packet formats
TCP IP ARP ICMP Ethernet, 802.1Q

ocaml-packet

» Serialization / deserialization for several packet formats
TCP IP ARP ICMP Ethernet, 802.1Q

« Only depends on cstruct
by Anil Madhavapeddy et al.

ocaml-packet
» Serialization / deserialization for several packet formats
TCP IP ARP ICMP Ethernet, 802.1Q

« Only depends on cstruct
by Anil Madhavapeddy et al.

- 32 Bits »

1 8 16 24 32
] N] [[L A N S S)]) [] N S S] [.] .

cstruct ip {
uint8 t vhl;
uint8_t tos; Version IHL Type of service Total length
uintl6é_t len;
uintl6_t ident; Identification Fragment offset
uintlée_t frag;
uint8 t ttl; Time 1o live Protocol Header checksum
uint8 t proto;
uintl6_t chksum; Source address

uint32 t src; ‘
uint32 t dst; Destination adress

uint32_t options
} as big endian

MM
m

Options (0 or more words)

ocaml-packet
» Serialization / deserialization for several packet formats
TCP IP ARP ICMP Ethernet, 802.1Q

« Only depends on cstruct
by Anil Madhavapeddy et al.

- 32 Bits »

1 8 16 24 32
] N] [[L A N S S)]) [] N S S] [.] .

cstruct ip {
uint8 t vhl;
uint8_t tos; Version IHL Type of service Total length
uintle _t len;
uintl6_t ident; Identification Fragment offset
uintlée_t frag;
uint8 t ttl; Time 1o live Protocol Header checksum
uint8 t proto;
uintl6_t chksum; Source address

uint32 t src; ‘
uint32 t dst; Destination adress

uint32_t options
} as big endian

MM
m

network Options (0 or more words)

L

byte order for

free /
13

ocaml-openflow

ocaml-openflow

» Serialization for OpenFlow 1.0 and 1.3

- OpenFlow 1.0 support based on mirage-openflow, using ideas from
Nettle (Haskell)

- OpenFlow 1.3 is less complete, but still usable

- Cstruct-based serialization

ocaml-openflow

» Serialization for OpenFlow 1.0 and 1.3

- OpenFlow 1.0 support based on mirage-openflow, using ideas from
Nettle (Haskell)

- OpenFlow 1.3 is less complete, but still usable

- Cstruct-based serialization

» Runtime systems for OpenFlow 1.0 and 1.3

- Listens for TCP connections from switches
- Does the OpenFlow handshake, keeps connections to switches alive

ocaml-openflow

» Serialization for OpenFlow 1.0 and 1.3

- OpenFlow 1.0 support based on mirage-openflow, using ideas from
Nettle (Haskell)

- OpenFlow 1.3 is less complete, but still usable

- Cstruct-based serialization

» Runtime systems for OpenFlow 1.0 and 1.3

- Listens for TCP connections from switches
- Does the OpenFlow handshake, keeps connections to switches alive

type t

val connect : Lwt unix.file descr -> t option Lwt.t
val send : t -> xid -> message -> unit Lwt.t

val recv : t -> (xid * message) Lwt.t

val disconnect : t -> unit Lwt.t

val wait disconnect : t -> unit Lwt.t

ocaml-openflow

» Serialization for OpenFlow 1.0 and 1.3

- OpenFlow 1.0 support based on mirage-openflow, using ideas from
Nettle (Haskell)

- OpenFlow 1.3 is less complete, but still usable

- Cstruct-based serialization

» Runtime systems for OpenFlow 1.0 and 1.3

- Listens for TCP connections from switches
- Does the OpenFlow handshake, keeps connections to switches alive

type t

val connect : Lwt unix.file descr -> t option [Lwt.t
val send : t -> xi1d -> message -> unit [Lwt.t
val recv : t -> (xid * message) [Lwt.t
val disconnect : t -> unit Lwt.t
val wait disconnect : t -> unit Lwt.t
ocsigen.,

. LUJE

OX

OX

» Based on popular Openflow platforms
- Inspired by POX (Python) and NOX (Python/C++)

OX

» Based on popular Openflow platforms
- Inspired by POX (Python) and NOX (Python/C++)

» Simple, single-threaded OpenFlow interface
- Uses LWT and ocaml-openflow internally

OX

» Based on popular Openflow platforms
- Inspired by POX (Python) and NOX (Python/C++)

» Simple, single-threaded OpenFlow interface
- Uses LWT and ocaml-openflow internally

Simple Controllers Advanced Controllers
e.qg., our OpenFlow tutorial e.qg., Frenetic, HotSwap

D a
OX ocaml-openflow }

) (¥

|
=
|

let packet _in (sw : switchId) (xid : xid) (pktIn : packetIn)
let pk = parse_payload pktIn.input payload in
let action =
if Packet.dlTyp pk = 0x800 && Packet.nwProto = 6 &&
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else if pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 01
{ output payload = pktIn.input payload; port _id = None;
apply actions = action }

: unit

let packet _in (sw : switchId) (xid : xid) (pktIn : packetIn)
let pk = parse_payload pktIn.input payload in
let action =
if Packet.dlTyp pk = 0x800 && Packet.nwProto = 6 &&
(Packet.tpDst = 22 || Packet.tpSrc = 22) then
[] (* no action (i.e., drop) SSH packets *)
else if pktIn.port = 1 then
[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 01
{ output payload = pktIn.input payload; port _id = None;
apply actions = action }

let switch_connected (sw : switchId) : unit =
send_flow_mod sw 01 (add_flow 200 match_ssh_src []);
send flow mod sw 01 (add flow 200 match ssh dst []);

send_flow mod sw 01

(add_flow 199 match _from 1 [Output (PhysicalPort 1)]);

send_flow mod sw 01

(add_flow 198 match_from 2 [Output (PhysicalPort jfg

send _flow _mod sw 01 (add_flow 197 match_all [])

: unit =

let packet _in (sw : switchId) (xid : xid) (pktIn : packetIn)
let pk = parse_payload pktIn.input payload in
let action =
if Packet.dlTyp pk = 0x800 && Packet.nwProto = 6 &&
(Packet.tpDst = 22 || Packet.tpSrc = 22) then

[] (* no action (i.e., drop) SSH packets *)
else if pktIn.port = 1 then

[Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 01
{ output payload = pktIn.input payload; port _id = None;
apply actions = action }

Priority Pattern Actions

200 diType:0x800, nwProto: 6, tpSrc: 22 drop

200 diType:0x800, nwProto: 6, tpDst: 22 drop

199 inPort: 1 Fwd 2

198 inPort: 2 Fwd 1

: unit =

e -/ Co
< B Ny, \|/
e :'h\-\ O//e,.

FA P
;2 #Controller

let packet _in (sw : switchId) (xid : xid) (pktIn : packetIn)

let pk = parse_payload pktIn.input payload in
let action =
if Packet.dlTyp pk = 0x800 && Packet.nwProto = 6 &&
»#(Packet.tpDst = 22 || Packet.tpSrc = 22) then
,;1':] (* no action (i.e., drop) SSH packets *)
F else if pktIn.port = 1 then
’ [Output (PhysicalPort 2)]
else
[Output (PhysicalPort 1)] in
send packet out sw 01

{ output payload = pktIn.input payload; port _id = None;

apply actions = action }

Priority Pattern Actions

200 diType:0x800, nwProto: 6, tpSrc: 22 drop

200 diType:0x800, nwProto: 6, tpDst: 22 drop

199 inPort: 1 Fwd 2

198 inPort: 2 Fwd 1

: unit

Monsanto et al.,, POPL 2012

Priority Pattern Actions Priority Pattern Actions

|

65535 dstIP: H1 Forward 65535 SSH Monitor

Monsanto et al.,, POPL 2012

Priority Pattern Actions Priority Pattern Actions

65535 dstIP: H1 Forward 65535 SSH Monitor

|
\

Priority Pattern Actions
65535 | SSH, dstIP: H1 Forward, Monitor
65534 | dstlP: H1 Forward
65533 | SSH Monitor

|7

Monsanto et al.,, POPL 2012

Priority Pattern Actions Priority Pattern Actions
65535 dstIP: H1 Forward T 65535 SSH Monitor
\/

Priority Pattern Actions
65535 | SSH, dstIP: H1 Forward, Monitor
65534 | dstlP: H1 Forward
65533 | SSH Monitor

o Otherissues:

- Well-formedness criteria on patterns; rules applied non-deterministically
in certain situations (Guha et al, PLDI 2013)
- (Cannot atomically update all switches (Rietblatt et al.,, SIGCOMM 2012)

|7

frenetic >

frenetic >

 DSL for programming OpenFlow networks

- Boolean predicates to match packets

- Several policy composition operators

- All compile to OpenFlow tables

- Abstractions address several fundamental problems of SDN

frenetic >

 DSL for programming OpenFlow networks

- Boolean predicates to match packets

- Several policy composition operators

- All compile to OpenFlow tables

- Abstractions address several fundamental problems of SDN

« Embedded in OCaml

- Access to standard OCaml data structures and functions
- Must use LWT for concurrency

frenetic >

 DSL for programming OpenFlow networks

- Boolean predicates to match packets
- Several policy composition operators

- All compile to OpenFlow tables
- Abstractions address several fundamental problems of SDN

« Embedded in OCaml
- Access to standard OCaml data structures and functions
- Must use LWT for concurrency

» Surface syntax
if tpSrc = 22 || tpDst = 22 then
drop
else if inPort = 1 then
fwd(2)
else
fwd (1)

frenetic >

frenetic >

 Implements key ideas from several published papers
- ICFP'11, POPL'12, SIGCOMM'11, PLDI'13, HotSDN'12, HotSDN'13

« Open source development of current work

frenetic >»>

 Implements key ideas from several published papers
- ICFP'11, POPL'12, SIGCOMM'11, PLDI'13, HotSDN'12, HotSDN'13

« Open source development of current work
 Frenetic and OpenFlow tutorial in OCaml

® 00 Frenetic Tutorial - frenetic-lang/frenetic Wiki 2
|2 > O] | 2] () GitHub, Inc. @ github.com (v 110
0 This repository - Explore Gist Blog Help P arunguha 2 X B

frenetic-lang / frenetic GSUnwatch ~ 24 Unstar 27 |f Fork 6
Home Pages History m
Frenetic Tutorial Ed\Peoe,) | Bews Hiery
- Y
Getting Started
00}
This is a hands-on tutorial with several programming exercises. We strongly recomend using the tutorial VM we've prepared that has all the
software that you need pre-installed. You can get the tutorial VM from the following link: -

hitps Jigithub.com/frenetic-lang/frenetic/releases/frenetic-1.0.1 l
ol

Introduction

In this tutorial, you will learn to program software-defined networks (SDNs) using OpenFlow and Frenetic. The tutorial is divided into two

sections:

e Ox: Chapters 2 — 5 introduce the nuts and bolts of programming an OpenFlow-based SDN. In these chapters, we use Ox, a simple
platform for writing OpenFlow controllers in OCamil. Apart from managing the socket connections and serialization, Ox gives you direct

-rom Haskell to OCaml :)

-rom Haskell to OCaml :)

» Core compiler and runtime system done in Coq

- Extracting to Haskell is much more painful
- Haskell extraction made us abandon some Cog functors

20

-rom Haskell to OCaml :)

» Core compiler and runtime system done in Coq
- Extracting to Haskell is much more painful
- Haskell extraction made us abandon some Coq functors
» Functors helped us discover key algebraic properties

- Helped establish connection to Kleene Algebra with Tests (KAT)
- Basis of a paper in submission

20

-rom Haskell to OCaml :)

» Core compiler and runtime system done in Coq
- Extracting to Haskell is much more painful
- Haskell extraction made us abandon some Coq functors
» Functors helped us discover key algebraic properties

- Helped establish connection to Kleene Algebra with Tests (KAT)
- Basis of a paper in submission

» Easier for our networking collaborators to grok OCaml
- Design discussions over .mli files with networking collaborators

20

-rom Haskell to OCaml :)

Core compiler and runtime system done in Coq

- Extracting to Haskell is much more painful
- Haskell extraction made us abandon some Cog functors

Functors helped us discover key algebraic properties

- Helped establish connection to Kleene Algebra with Tests (KAT)
- Basis of a paper in submission

Easier for our networking collaborators to grok OCam|
- Design discussions over .mli files with networking collaborators
OPAM and oasis are great

- All our packages are on OPAM
- OPAM overlays provide stability

20

-rom Haskell to OCaml : (

: (

-rom Haskell to OCam

 Lwt programming is mind-boggling for beginners
- Syntax extension helps a lot
- E.g., very difficult to reason about exceptions

21

-rom Haskell to OCaml : (

 Lwt programming is mind-boggling for beginners

- Syntax extension helps a lot
- E.g, very difficult to reason about exceptions

« NO more multicore

- Needed for large networks (Voellmy et al. at Haskell “13)
- Needed to compile fast-changing policies (Ferguson et al. at SIGCOMM'1 3)

21

Hack your Network in OCaml

Frenetic

22

Hack your Network in OCaml

Hack at any layer

« Packet serialization

« OpenFlow serialization
« Ox controller

e Frenetic

22

Hack your Network in OCaml

Frenetic

Ongoing work in OCaml

« Network Hypervisor

Hack at any layer A Laurent Vanbever, et al.

. Packet serialization ?atalog—based SDN language

e =¥ Tim Nelson, et al
- OpenFlow serializationZes=="

. * FaUlt Tolerant Frenetic
” Mark Reitblatt, et al.

- Ox controller==="

- Frenetic g="" _ Property-checking Frenetic

= pebecca Coombes, Matthew Milano, et al.

