High level OCaml optimisations

Pierre Chambart, OCamlPro

OCaml 2013, 23 September 2013

OCaml is fast

Not an optimising compiler, but:

= Predictable performances

» Good generated code

What can we do to get faster ?

Small modification on high level shouldn't
iInfluence too much low level

let f x =
let cmp = x > 3 in
if cmp then A
else B

let g x =
if x > 3 then A
else B

= which one is faster ?

= g is faster: peephole

Abstract code could be compiled less
abstractly

let g x
let f
X +

in

f 3

<<

= finlined, but its closure allocated at each call.

= But we don't want the compiler to be 'too smart'.

How 1t works

parsetree typedtree lambda clambda cmm mach lin asm
'-> byte code

= parse tree: AST

» typed tree: AST with types

» lambda: untyped lambda

» clambda: lambda + closures

= cmm: simple C-like

= mach: instruction graph (llvm-like)

= lin: almost like assembly

How 1t works

parsetree typedtree lambda clambda cmm mach lin asm
'-> byte code

» typedtree to lambda: high level construct elimination
» lambda: high level simplifications

» lambda to clambda: closure introduction, inlining, constant propagation (and
book keeping)

= clambda to cmm: unboxing, lots of peep hole
= cmm to mach: instruction selection

= mach: allocation fusion, register allocation, scheduling

Closures

let g x
let f
X +
in
f 3

<< 1l
1l

let g x =
let closure_f = {
let f v closure_f
closure_f.x + v
in
f 3 closure_f

X = x } in

Where:

typedtree: too complicated

lambda: we want inlining, simpler with closures

clambda: difficult to improve (I tried)

cmm: good for local optimisation

mach: architecture specific

Between lambda and clambda

parsetree -> typedtree -> lambda -> flambda -> clambda -> cmm -> mach -> lin -> asm

We need:

High level

Simple manipulation

Explicit closures

Explicit value dependencies

flambda: lambda + explicit symbolic closures (normal and Administrative Normal
Form)

Difference with clambda

let g x =
let closure_f = {
let f v closure_f
closure_f.x + v
in
f 3 closure_f

X } in

(|
1l

let g x =
let closure_f = [|code_pointer; 3; x|] in
let f v closure_f =
closure_f.(2) + v
in
f 3 closure_f

New transformations

= lambda to flambda: closure introduction.

» flambda to clambda: mainly book-keeping (and preparing cross module
iInformations)

The magic will be in flambda to flambda passes.

Optimisation framework

Transformations provided to simplify passes:

Input: cannonical representation Few restrictions on output.
= inlining
» dead code elimination

= constant propagation/simplification

Not optimising: simplification to allow good code generation

Constant extractions

let a = (1,2)

let f x =
let y = (a,3) in
X, Yy

let a = (1,2)
let y = (a,3) in

let f x =
X,y

Inlining

let g x =
let closure f = { x = x } in
let f v closure_f =
closure_f.x + v
in
f 3 closure_f
let g x =
let closure f = { x = x } in

let f v closure_f
closure_f.x + v
in

let v = 3 in
closure_f.x + v

Simplification

let g x =
let closure f = { x = x } in
let f v closure_f =
closure_f.x + v
in
let v = 3 in
closure_f.x + v
let g x =
let closure f = { x = x } in

let f v closure_f
closure_f.x + v

in

let v = 3 in

X + 3

Dead code elimination

let g x =
let closure f = { = X } in
let f v closure_f
closure_f.x + v

I X

in
let v = 3 in

X + 3

let g x

X + 3

Simple optimisation: Lambda lifting

let g x =
let f v =
X + v

in
f 3

Simple optimisation: Lambda lifting

let g x =
let f v =
X + v
in
f3

let g x =
let f' x v =
X + V
in
let f v=+°Ff" xvin
f 3

» ~20 lines

= No need to bother propagating: it's the inliner's job.

let g x =
let f' x v =
X + vV
in
f' x 3

Change the performance model:

= Now: WYSIWYG

= Wanted: Some kind of understandable compile time evaluation

let map f 1 =
let rec aux = function

| [1 -> [1

| h::t -=> f h :: aux t
in
aux 1

let f 1L = map succ 1

Future

= High level things in cmm could move to flambda

» Lots of small simple passes

One last thing

» Please add build_test to your opam packages !

= No Obj.{magic, set_field} or whatever horrible thing: | will break your code !

Flambda type

type 'a flambda =
| Fclosure of 'a ffunctions * 'a flambda IdentMap.t * 'a
| Foffset of 'a flambda * offset * 'a
| Fenv_field of 'a fenv_field * 'a

| Fsymbol of symbol * 'a

| Fvar of Ident.t * 'a

| Fconst of const * 'a

| Fapply of 'a flambda * 'a flambda list * offset option * Debuginfo.t * 'a

| Flet of let _kind * Ident.t * 'a flambda * 'a flambda * 'a
| ...

| Funreachable of 'a

and const =

| Fconst _base of constant
Fconst_pointer of int
Fconst_float_array of string list
Fconst_immstring of string

Numbers
= knuth-bendix ~20%
= Noiz ~40%

= Set ~20%

Knuth-bendix

let f x = if x = 0 then failwith "error"

compiled as

Failure "error"
if x = 0 then raise exn

let exn
let f x

Inlining
= noizocaml let map triple f (a,b,c) = (f a, f b, T c)

= Set: functor

