
Runtime types in OCaml

Jacques Garrigue Grégoire Henry

1 Introduction

Following a proposition from Alain Frisch, we presented
with Pierre Chambart at OUD 2012, a prototype exten-
sion of the OCaml compiler, (re)introducing runtime-
types as first-class values in the language. Introspection
of runtime-types in a type-safe manner was made pos-
sible by using a GADT describing the structure of the
head type constructor. This was allowing one form of
generic programming known as polytypic programming,
a.k.a. functions defined by cases on the structure of their
arguments types.

With this purely structural approach of runtime types,
abstract types do not have a canonical representation.
To allow the extension of a polytypic function with an
ad hoc behaviour for a given abstract type, we relied on
the manual creation and transmission of type witnesses.
This approach has two main drawbacks:

• even with a mechanism for implicitly propagat-
ing type witnesses, manipulating abstract types in-
volves a programming overhead

• as the representation of types is not unique, two
parts of a program may end up defining different
witnesses for the same type, hindering communica-
tion between them

We would like to present a new approach which makes
nominal introspection of types more pervasive in the
language, while keeping all the structural information
required for polytypic programming. This relies on a
canonical representation for all types, i.e. including ab-
stract ones. We have a prototype implementation that
works well for types in the global context—i.e. types
in imported .cmi files. Sadly, there is no trivial notion
of runtime-type equality when we want to compare, for
instance:

• the internal concrete representation of a type and
its external abstract representation; or,

• an abstract type in a functor parameter and its con-
crete instance in a functor application.

We would like to present to the community the dif-
ferent semantics for equality that we have identifed and
the corresponding pratical consequences in terms of pro-
gramming style, execution cost, and preservation of the
abstraction. We are looking for feedback from potential
users.

In the following, we try to illustrate the main difficul-
ties by some examples.

2 A canonical representation

Consider the following interface, contained in A.mli.

module Id : sig

type t

val next : unit -> t

val print : t -> unit

end

module type TREE = sig

type t

type id

val leaf : id -> t

val node : id -> t list -> t

val print : t -> unit

end

module Tree = functor (X : module type of Id) ->

TREE with type id = X.t

module TreeId : TREE with type t = Tree(Id).t

and type id = Id.t

Without adding any extra information to A itself, we
can build runtime representations for all types in this
module. All we need is a global identifier IdA, corre-
sponding to the compilation unit A. Then A.Id.t can be
represented by the path IdA.Id.t. Type aliases have
no proper identity, and are just represented by their
contents, so that A.TreeId.id is again IdA.Id.t. We
also respect the applicativity of functors, and represent
A.TreeId.t by IdA.Tree(IdA.Id).t, so that applying
A.Tree to A.Id in another compilation unit would still
generate the same runtime representation.

While it incurs no cost, this representation is sufficient
to handle all types exported by compilation units, pre-
serving all the statically known type equalities, as long
as we refer to them from other compilation units.

3 Abstraction

Consider the implementation file A.ml, where:

• the expression (type t) represents the runtime rep-
resentation of a type t; it has the static type t ty;

• the print function in the Tree functor is imple-
mented with a call to a generic printer of type:
α ty→ α → unit;

• the call to Generic.register printer in the Id

1



module extends the generic printer with a printer
for the abstract type Id.t.

module Id = struct

type t = int

let next =

let cpt = ref 0 in

fun () -> incr cpt; !cpt

let print id = sprintf "id(%d)" id

let () =

Generic.register_printer (type t) print

end

module type TREE = ...

module Tree (X : module type of Id)

: TREE with type id = X.t = struct

type id = X.t

type t =

| Leaf of id

| Node of id * t list

let leaf id = Leaf id

let node id l = Node (id, l)

let print = Generic.print (type t)

end

module TreeId = Tree(Id)

Internal vs. external representations In this
small example, we purposefully introduced two contra-
dictory uses of the (type t) expression. For the first oc-
curence, it should denote the abstract type A.Id.t and
not the internal type t that is equal to int; otherwise,
the custom printer would replace the default printer for
all integers instead of being associated with the global
abstract type A.Id.t. Meanwhile, for the second oc-
curence of the expression (type t), we want it to denote
the concrete definition of t—which contains all the struc-
tural information about leafs and nodes—and not the
global abstract one A.Tree(X).t; otherwise, the generic
printer would not have enough information to print the
value. In others words, when refering to types defined
in the current compilation unit, one may have to choose
between multiple possible representations of the same
type.

Furthermore, while a runtime type-equality predicate
could safely consider all these possible representations as
equal when the comparison take place inside the compi-
lation unit, this should probably not be the case when
the comparison take place outside the compilation unit.
Indeed, if an internal type representation implicity es-
capes its compilation unit, this would allow to dynami-
cally break the abstraction.

Functor parameters For the A.TreeId.print func-
tion to have the expected behaviour, the type represen-
tation applied to the generic printer must contain all
the required type information, including the concrete in-
stance of the X.t type. Otherwise the generic printer
would not be able to use the registered custom printer

for Id.t. For that purpose, one possibilty is to trans-
parently pass the runtime representation of its type pa-
rameter to a functor.

However, in order not to break the abstraction permit-
ted by functor parameters, one may also prefer the run-
time representation of X.t not to be related with its con-
crete instance. This means introducing a distinct anony-
mous representation of X.t for each functor application.
Then, the expected behaviour for A.TreeId.print could
be achieved with the following implementation:

module Tree (X : module type of Id)

: TREE with type id = X.t = struct

type id = X.t

type t = ...

(* ... *)

let () =

Generic.register_printer (type X.t) X.print

let print = Generic.print (type t)

end

However, such anonymous representations break the
canonicity property of runtime types in the global con-
text.

Implicit aliases While in general we want to preserve
type abstraction at runtime, there are some situations
however where we may prefer not to. Typically, when
the abstraction is not really used as a mechanism for
preserving an invariant in a data structure but only as
some sort of simplification mechanism. For instance, in
the previous interface a.mli, the type equality TreeId.t
= Tree(Id).t — which is implicit in the implementa-
tion file — is usually omitted for simplicity:

module TreeId : TREE with type id = Id.t

This introduces a new abstract type A.TreeId.t,
that is different from the (already abstract) type
A.Tree(Id).t. Then, if the Tree functor registers a cus-
tom printer for trees, it will be associated to the latter
type only.

While a programmer can easily fix this situation by
exporting the equation in the signature or explicitely
registering the custom printer for A.TreeId.t after the
functor application, this forces a more cumbersome pro-
gramming style.

4 Conclusion

As we hope to have made clear in this proposal, han-
dling the nominal aspect of runtime types in presence
of abstraction is not an easy task. This is still work in
progress, but we have already developed some solutions
to the problems described. In the presentation we will
explain the ideas underlying those solutions.

2


