Profiling the Memory Usage of OCaml Applications

without Changing its Behavior

Cagdag Bozman
OCamlPro & INRIA & ENSTA-ParisTech
cagdas.bozman@ocamlpro.com

Fabrice Le Fessant
INRIA & OCamlPro
fabrice.le_fessantQinria.fr

Abstract

In this paper, we present the current state
of our work on profiling the memory usage
of OCaml programs. Our technique allows
to observe track types, allocation points and
reachability paths of blocks, with no runtime
cost, except for saving the observations.

1 Introduction

OCaml is a strongly typed functional pro-
gramming language with automatic memory
management, using a generational and incre-
mental garbage collector. The main benefit
from automatic memory management is
that it frees the programmer from manually
dealing with memory allocation/deallocation
and thus ensuring that a large class of bugs
never happen, like dangling pointers, double
frees, etc. However, automatic memory
management has also some drawbacks: some
values might never be reclaimed by the
garbage collector (for instance when they
are stored in a global hash-table) and the
garbage collector itself consumes resources
to decide which memory cells to free. As
the memory pressure increases, automatic
memory management can become a per-
formance problem for the application as well.

Michel Mauny
ENSTA-ParisTech
michel.mauny@ensta.fr

Thomas Gazagnaire
OCamlPro
thomas.gazagnaire@ocamlpro.com

Thus, there is a need for tools to help de-
velopers profile the memory usage of their
OCaml programs, but almost nothing is cur-
rently available for OCaml. We implemented
a tool, called ocamlmemprof [1], that can
save information on the memory usage of
an OCaml application, providing a way to
gather type/allocation statistics and reacha-
bility information for every block in the heap
of the application, with no runtime penalty
except for saving the data. We present our
technique and implementation in the remain-
ing of this paper.

2 General Idea

Thanks to its strong type system, OCaml
does not need much runtime type informa-
tion in values to perform standard computa-
tions. Consequently, the memory representa-
tion of OCaml values is much more compact
than values of a weakly typed language, re-
sulting in better memory performance. How-
ever, when profiling memory performance of
OCaml programs, the — almost complete —
absence of runtime type information becomes
a problem to recover information from the
values currently using the heap space.

In previous versions of ocamlmemprof [1],
we stored additional runtime type informa-
tion in blocks, to be able to recover enough



header

word [0]

word [1]

Figure 1: A block used for representing an
OCaml value

‘ Wosize ‘ Color ‘ Tag

54 bits 2 bits 8 bits

Figure 2: Format of the 64-bit block header

interesting information. However, doing so
changes the behavior of the application: as
blocks are one-value longer (for a list, it
means a 25% overhead), there is an increased
pressure on the garbage collector, resulting
in two drawbacks: as the program allocates
more, and the overhead ratio depends on the
size of the block, the profiled program does
not perform exactly like the production pro-
gram, leading to possibly inaccurate conclu-
sions; also, since profiling impacts the general
performance of the application, it might be
impossible to profile an application in pro-
duction, and thus to debug a problem occur-
ing after a few days or weeks of execution.

In the new version of ocamlmemprof, we
are experimenting a new technique to profile
the memory behavior of an application, with-
out impacting its performance nor adding
memory overhead. Basically, the technique
uses a useless part of the header of values on
64 bits platforms, to store a small identifier.
This identifier can be used to recover the al-
location point and the type of the value, al-
though its small size might lead to collisions,
that we think can be distinguished using sim-
ple heuristics.

Figure 1 shows a block in the OCaml heap,
corresponding to an OCaml value. The block
is prefixed by a 64-bit header (on 64 bits sys-
tems) whose format is displayed on Figure 2:
The first 54-bits are used to encode the size of
the block (in words, i.e. 8 bytes values), then
2 bits are used for garbage collection (mark-
and-sweep colors|2]), and finally 8 bits are
used to encode the minimal type information

Wosize
33 bits

Identifier
21 bits

‘Color‘ Tag ‘
2 bits 8 bits

Figure 3: The modified header format

required for standard operations (discrimina-
tion between variants with arguments, poly-
morphic comparisons, etc.).

We modified this format to use 21 bits of
the size to encode an identifier, correspond-
ing to the location in the code where the
block was allocated, and thus, the type of
the block with high probability. The new for-
mat of the header is presented on Figure 3.
Thanks to this modification, we can discrim-
inate 2 million allocation sites, while still be-
ing able to allocate blocks of size 64 GB (33
bits times 8 bytes), fitting all usages in known
OCaml applications.

3 Locations Identifiers

3.1 Generating Identifiers

First we need to patch the OCaml com-
piler to propagate the source location to the
bytecode and/or the code generation (na-
tive version). For that purpose, we generate
a random identifier directly in the compiler
for each allocation site, which will allow us,
later, to associate a location in the source
code to each given memory block in the heap.

Identifiers are generated by a simple calcu-
lation: a hash of the location and the digest
of the module name. The drawback with this
computation is that there is a risk of colli-
sion (two locations with the same identifier),
given the little identifier space.

When compiling an application, we gen-
erate a .prof file, containing all (identi-
fier,location) pairs of the program: for each
unit, we store them in .cmo/.cmi files, and
combine them at link time. Later, this file
will allow us to find quickly the location cor-
responding to identifiers.

Once we have those locations, it is quite



easy to extract the type information that we
need from .cmt files.!

3.2 Storing Identifiers

Now that we can generate identifiers and we
have the association between those identifiers
and the locations they denote, we need to
store this information in the heap.

For this, we modified both the compiler
backends, to store the identifiers when al-
locating blocks (headers are statically com-
puted at compile time, so adding identifiers
has no performance impact). We also mod-
ified all C primitives that would allocate in
the heap, and predefined static location iden-
tifiers for all of them, to be able to discrimi-
nate between values allocated in the runtime.

4 Profiling with Snapshots

There are several ways to use the identi-
fiers stored in the blocks. In this section,
we present a first technique, based on saving
snapshots of the program memory.

A snapshot is a file containing the
graph of blocks in the heap, after a
full garbage collection. FEach snapshot is
called heap.dump.PID.COUNT, where PID is
the identifier of the running process, and
COUNT the number of the snapshot.

The file is generated by scanning all the
chunks composing the heap (a chunk is a
huge block of memory, where the garbage col-
lector can allocate OCaml values). In each
chunk, a block is saved into the snapshot if
it is not in the free-list (blocks of the freelist
have a header with blue color). When sav-
ing a block, we store the header of the block
(tag, size, identifier) and the content, if it
contains OCaml values (i.e. not a string, ab-
stract block, floats or custom). Finally, we
also save in the snapshot the content of glob-
als values, i.e. toplevel modules, so that it

!Files containing type-annotated parse trees gen-
erated by -bin-annot.

is possible to recover from the snapshot, the
path by which any block is reachable from a
global root.

All this information can be used to provide
statistics on the blocks in the heap (types and
allocators, using identifiers, but also sizes or
tags). It can also be used to navigate in-
side the graph of values, and to recover ex-
act types when collisions happen between our
identifiers, by comparing the shape of the
content with the possible types.

For the user, there are mostly two ways to
trigger the generation of snapshots:

e The first method is to wuse
OCAMLRUNPARAM=m, that will force a
program to generate a snapshot after
every garbage collection. This behavior
can be especially useful to follow the
evolution of the heap content during the
lifetime of a program. However, given
the size of snapshots, such a technique
can only be used by short-live programs,
that run too fast to be monitored by an
online tool.

e The second method is to ask the pro-
gram to generate a snapshot at a specific
time. Such a method can be used with
a server running for days (typically ML-
Donkey [3]), where an increase of mem-
ory usage has been noticed, to under-
stand the reasons for such an increase.
The current implementation can trigger
the generation of a snapshot when re-
ceiving the HUP signal, or when the func-
tion Gc.dump_heap () is called from the
user interface.

5 Continous Profiling

We saw in the previous section how to profile
an application using memory snapshots, but
sometimes we want to profile some applica-
tions during their execution.

We want to track blocks in the minor gen-
eration heap for example. For that purpose,



we added some arrays, indexed by the iden-
tifiers generated by the compiler, which will
allow us to know at any time during the ap-
plication’s execution the number of element
of a value alive in the minor heap.

In the same way, we can extend these ar-
rays to the major generation heap and then
know the number of value directly allocated
in the major heap. Having an array of col-
lected object is then trivial.

Finally, we can easily have different type of
information like the promotion from the mi-
nor generation heap to the major generation
heap. We can also have information about a
sort of life span of memory blocks: this in-
formation can be collected by counting how
many GC a bloc survived.

A profiler tool can then just be connected
to these arrays to show continuous way the
evolution of the memory.

6 Conclusion and Perspec-
tive

Using our tool, it is now possible to have a
better idea of the memory behavior of OCaml
programs. Once the profiling is done, we
need to understand results and analyze the
usage of memory for each type to observe
suspicious amount of memory usage.

To summarize, the new ocamlmemprof
consists in a set of modifications to the com-
piler and runtime from the OCaml distribu-
tion to dump heap images into a journal.

We hope that this tool will help develop-
ers spot memory problems in their programs.
Advanced users can use this information to
improve their programs by reducing alloca-
tions in their programs’ critical paths. For
less advanced users, we plan to develop other
tools, more intuitive, heuristically providing
advice on how to reduce the memory cost of
a particular function or type.

Since we have some data associated to
heap objects, we plan to track other inter-

esting information like which values go from
minor generation heap to major generation
heap, or which values stay alive after a num-
ber of major collections, and (why not) track-
ing how long a value survives, in collections.
In the next versions, we will also try to man-
age collision in identifiers looking for example
the shape of blocks to try to distinguish one
type from another.

To conclude, we have now a lot of informa-
tion that we have to exploit and our work is
to highlight the useful part to show memory
issues.

References

[1] C. Bozman, M. Mauny, F. Le Fessant,
and T. Gazagnaire. Study of ocaml pro-
grams’ memory behavior. OCaml Users
and Developers, 2012.

[2] D. Doligez and X. Leroy. A concurrent,
generational garbage collector for a mul-
tithreaded implementation of ML. In
Proc. 20th symp. Principles of Program-
ming Languages, pages 113-123. ACM
press, 1993.

[3] F. Le Fessant, S. Patarin, et al. MI-
donkey, a multi-network peer-to-peer file-
sharing program. 2003.



