04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

Ocamlm OCaml Products Services Company

Optimisations you shouldn't do g

24
Posted by Pierre Chambart - 0 Comments _
Sep 2013
OCamlPro Highlights, August
- - 2013
Doing the compiler's work
Working at OCamlPro may have some drawbacks. I spend a lot of time hacking the OCaml compiler. Hence Aug 2013

when I write some code, I have a good glimpse of what the generated assembly will look like. This is nice
when I want to write performance sensitive code, but as I usually write code for which execution time
doesn't matter much, this mainly tends to torture me. A small voice in my head is telling me "you shouldn't
write it like that, you known you could avoid this allocation". And usually, following that indication would _]U| 2013
only tend to make the code less readable. But there is a solution to calm that voice: making the compiler
smarter than me.

News from July

Better Inlining: Progress

Report
OCaml compilation mechanisms are quite predictable. There is no dark magic to replace your ugly code by
a well-behaving one, but it always generates reasonably efficient code. This is a good thing in general, as
you won't be surprised by code running more slowly than what you usually expect. But it does not behave
very well with dumb code. This may not often seem like a problem with code written by humans, but May 2013
generated code, for example coming from camlp4/ppx, or compiled from another language to OCaml, may
fall into that category. In fact, there is another common source for non-human written code: inlining.

News from May and June

Optimisations you shouldn't do

Apr 2013

Inllnlng April Monthly Report

Inlining (or inline expansion) is a key optimisation in many compilers and particularly in functional wxOCaml, camlidl and Class
languages. Inlining replaces a function call by the function body. Let's apply inlining to fin this example.

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 1/14

http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#disqus_thread
https://github.com/OCamlPro
http://www.ocamlpro.com/feed/atom.xml
http://www.ocamlpro.com/blog/2013/09/04/monthly-08.html
http://www.ocamlpro.com/blog/2013/08/05/monthly-07.html
http://www.ocamlpro.com/blog/2013/07/11/inlining-progress-report.html
http://www.ocamlpro.com/blog/2013/07/01/monthly-06.html
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html
http://www.ocamlpro.com/blog/2013/04/22/monthly-04.html
http://www.ocamlpro.com/blog/2013/04/02/wxocaml-reloaded.html
http://www.ocamlpro.com/index.html
http://www.ocamlpro.com/ocaml/index.html
http://www.ocamlpro.com/products/products.html
http://www.ocamlpro.com/services/services.html
http://www.ocamlpro.com/blog/index.html
http://www.ocamlpro.com/company/contact.html

04/10/13

OCamlPro :: Blog :: Optimisations you shouldn't do

let f x
let gy

X +
f (fy)

We replace the calls to f by let for each arguments and then copy the body of f.

let gy =
let x1 = y in
let rl = x1 + 1 in
let x2 = rl in
let r2 = x2 + 1 in
r2

Inlining allows to eliminate the cost of a call (and associated spilling), but the main point is elsewhere: it
puts the code in its context, allowing its specialisation. When you look at that generated code after inlining
your trained eyes will notice that it looks quite dumb. And you really want to rewrite it as:

letgy=y +

The problem is that OCaml is compiling smart code into smart assembly, but after inlining your code is not
as smart as it used to be. What is missing in the current compiler is a way to get back a nice and smart
code after inlining. (To be honest, OCaml is not that bad and on that example it would generate the right
code: put this on the sake of the mandatory blog-post dramatic effect.)

In fact you could consider inlining as two separate things: duplication and call elimination. By duplication
you make a new version of the function that is specialisable in its context, and by call elimination you
replace the call by specialised code. This distinction is important because there are some cases where you
only want to do duplication: recursive functions.

Recursive function inlining

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html

Modules

Mar 2013

An Indentation Engine for
OCaml

OPAM 1.0.0 Released

Feb 2013

An Overview of our Current
Activities

Jan 2013
Beta-release of OPAM

Aug 2012

OCamlPro's Contributions to
OCaml 4.00.0

Profiling OCaml amd64 code
under Linux

Aug 2011

Packing and Functors

Jun 2011

OCaml and Windows

2/14

http://www.ocamlpro.com/blog/2013/04/02/wxocaml-reloaded.html
http://www.ocamlpro.com/blog/2013/03/18/monthly-03.html
http://www.ocamlpro.com/blog/2013/03/14/opam-1.0.0.html
http://www.ocamlpro.com/blog/2013/02/18/monthly-01-02.html
http://www.ocamlpro.com/blog/2013/01/17/opam-beta.html
http://www.ocamlpro.com/blog/2012/08/20/ocamlpro-and-4.00.0.html
http://www.ocamlpro.com/blog/2012/08/08/profile-native-code.html
http://www.ocamlpro.com/blog/2011/08/10/ocaml-pack-functors.html
http://www.ocamlpro.com/blog/2011/06/23/ocaml-mscv-win64.html

04/10/13

In a recursive function duplicating and removing a call is similar to loop unrolling. This can be effective in
some cases, but this is not what we want to do in general. Lets try it on List.map

let rec list map f 1 = match 1 with
| [T -> T[]
| a::r -> f a :: list map f r

let 1' =
let succ = (fun x -> x + 1) in
list map succ 1

If we simply inline the body of list_ map we obtain this

let 1' =
let succ = (fun x -> x + 1) in
match 1 with
[[1 -> 11

| a::r -> succ a :: list map succ r

And with some more inlining we get this which is probably not any faster than the original code.

let 1' =
let succ = (fun x -> x + 1) in
match 1 with
| [1 ->[1]
| a::r ->a + | :: list map succ r

Instead we want the function to be duplicated.

let 1' =
let succ = (fun x -> x + 1) 1in

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html

OCamlPro :: Blog :: Optimisations you shouldn't do

OCaml Cheat Sheets

May 2011
OCaml 32bits longval

3/14

http://www.ocamlpro.com/blog/2011/06/03/cheatsheets.html
http://www.ocamlpro.com/blog/2011/05/06/longval.html

04/10/13

OCamlPro :: Blog :: Optimisations you shouldn't do
let rec list map' f 1 = match 1 with
| [1 -> T[]
| a::r -> f a :

: list map' f r in
list map' succ 1

Now we know that List map' will never escape its context hence that its f parameter will always be succ.
Hence we can replace f by succ everywhere in its body.

let 1' =
let succ = (fun x -> x +

) in
let rec list map' f 1 = match 1 with
| [1 -> 1[I

| a::r -> succ a ::

list map' succ r in
list map' succ 1

And we can now see that the f parameter is not used anymore, we can eliminate it.

let 1' =
let succ = (fun x -> x +

) in
let rec list map' 1 = match 1 with
| [1 -> 1]

| a::r -> succ a :: list map' r in
list map' 1

With some more inlining and cleaning we finally obtain this nicely specialised function which will be faster
than the original.

let 1' =

let rec list map' 1 = match 1 with
| [1 -> 1]
| a::r -> a +

:: list map' r in
list map' 1

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html

4/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

Current state of the OCaml inliner

Inlining can gain a lot, but abusing it will increase code size a lot. This is not only a problem of binary size
(who cares?): if your code does not fit in processor cache anymore, its speed will be limited by memory
bandwidth.

To avoid that, OCaml has a threshold to the function size allowed for inlining. The compiler may also refuse
to inline in other cases that are not completely justified though, mainly for reasons related to its
architecture:

e duplication and call elimination are not separated, hence recursive function duplication is not possible.

e functions containing structured constants or local functions are not allowed to be duplicated, preventing
those functions to be inlined.

let constant x =
let 1L = [1] in
x::l

let local function x =
let g x = some closed function in

g X ...

The assumption is that if a function contains a constant or a function it will be too big to be reasonably
inlined. But there is a reasonable transformation that could allow it.

let 1 = [1]
let constant x =
x::l

let g x = some closed function
let local function x = ... g X ...

and then we can reasonably inline constant and local function. Those cases are only technical

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 5/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

limitation that could easily be lifted with the new implementation.

But improving the OCaml inliner is not that easy. It is well written, but it is also doing a lot of other things at
the same time:

closure conversion

closure conversion transforms functions to a data structure containing a code pointer and the free variables
of the function. You could imagine it as that transformation:

let a

let f x = x + a (* a is a free variable in f *)

Il
—h

let r

Here a is a free variable of f. We cannot compile f while it contains reference to free variables. To get rid
of the free variables, we add a new parameter to the function, the environment, containing all the free
variables.

let a =

let f x environment =
(* the new environment parameter contains all the free variables of f *)
X + environment.a

let f closure = { code = f; environment = { a =a } }

let r = f closure.code f_closure.environment

Value analysis

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html

6/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

In functional languages inlining is not as simple as it is for languages like C because the function name does
not tells you which function is used at a call site:

let f x = (x,(fun y -> y+1))

let g x =
let (a,h) = f x in
h a

To be able to inline h as (funy -> y+1) the compiler needs to track which values flows to variables. This is
usually called a value analysis. This example can look a bit contrived, but in practice functor application
generate quite similar code. This allows for instance to inline Set.Make(...).is_empty. The result of this value
analysis is used by other optimisations:

Constant folding

When the value analysis can determine that the result of an operation is a constant, it can remove its
computation:

let f x =
let a = 1 1in
let b =a + 1 in
X+ b

Since b always have the value 2 and a + 1 does not have side effects it is possible to simplify it.

let f x =
X +

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 7/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

Direct call specialisation

Sometimes it is impossible to know which function will be used at a call site:

let f g x =g x

There is a common representation (the closure) that allows to call a function without knowing anything
about it. Using a function through its closure is called a generic call. This is efficient, but of course not as
efficient as a simple assembly call (a direct call). The work of the direct call specialisation is to turn as many
as possible generic call into direct ones. In practice, the vast majority of calls can be optimised.

Improving OCaml inliner

The current architecture is very fast and works well on a lot of cases, but it is quite difficult to improve the
handling of corner cases.

I have started a complete rewrite of those passes, I am currently working on splitting all those things in
their own passes. The first step was to add a new intermediate representation (flambda) more suited to
doing the various analysis. The main difference with the current representation (clambda) is that closures
are explicitly represented, making them easier to manipulate. As a nice side effect this intermediate
representation allows to plug passes in or out, or loop on them without changing anything to the
architecture. But we are losing the possibility to enforce some invariants in the type of the representation,
hence we need to be careful to correctly maintain them.

With this new architecture, the closure conversion is done first (going from lambda to flambda). Then on
flambda are provided a set of simple analysis:

e simple intraprocedural value and alias analysis
e purity analysis

e constant analysis

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 8/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

e dead expression analysis
And there is a set of simple passes using their results:
e dead code elimination

e constant folding/direct call specialisation/type specialisation: a simple traversal replacing expressions
with more efficient ones when the result of the value analysis allows it.

e alias rebinding: Use results of alias analysis to know when a field access can be simplified:

let f x =
let tuple
let (y,z)
y + z

(x,x) in
tuple in

let f x =
X + X

Of course nobody would write that, but access to variables bounded in a closure can looks a lot like that
after inlining:

let f x =
let gy =x+ vy in
g X

After closure conversion we obtain this.

let f x =
let g closure =
{ code = fun x environment -> environment.x + y;
environment = { x = x } } in
g closure.code x g closure.environment

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 9/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

And after inlining g.

let f x =
let g closure =
{ code = fun x environment -> environment.x + y;
environment = { x = x } } in
X + closure.environment.x

Inlining g makes some code that looks a bit stupid. closure.environment.x is always the same value
as X. So there is no need to access it through the structure.

let f x =
let g closure =
{ code = fun x environment -> environment.x + y;
environment = { x = x } } in
X + X

Now that we have simplified the code, we notice that g closure is not used anymore, and dead code
elimination can simply get rid of it.

+ -
X

e a really, really dumb inliner: it inlines almost anything. Its interest is to demonstrate what can be
achieved when putting some code in its context.

After the different optimisation passes we need to send the result to the compiler back-end. This is done by
the final conversion from flambda to clambda, which is mainly doing a lot of bureaucratic transformations
and mark constant structured values. Doing this constant marking separately also allows to improve a bit
the generated code.

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 10/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

let rec f x =
let gy =1Ffyin
g X

f and g are closed functions but the current compiler will not be able to detect it and allocate a closure for
g at each call of f.

Hey ! Where are the nice charts ?

As you noticed that there were no fancy improvements charts, and there won't be any below. Those are
demonstrations passes, the generated code can (and probably will) be worse than the one generated by
the current compiler. This is mainly done to show what can be achieved by combining simple passes and
simple analysis and allowing to apply them multiple times. What is needed to get fast code is to change the
inlining heuristic (and re-enable cross module inlining).

My current work is to write more serious analysis allowing better optimisations. In particular I expect that
a reasonable interprocedural value analysis could help a lot with handling recursive function specialisation.

My future toys
ThenI'd like to play a bit with other common things like

e unused parameters elimination: when a function does not use one of its parameters, remove it. This is
trivial with simple functions, but it can get a bit tricky with multiply recursive functions. (that kind of code
can appear after constant folding with informations from interprocedural analysis)

e |lambda lifting: turning closure into closed function by adding arguments. This can eliminate some
allocations

let f x =
let gy = x + y in
g

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 11/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

If we add the x parameter to g we can avoid building its closure each time f is called.

let f x =
let gy x =X +y in
g ' x

This can get quite tricky if we want to handle cases like

let f xn
let gi=1+ x in
Array.init n g

We need to add a new parameter to init also to be able to pass itto g.

e common sub-expression elimination:

let f x =
let a = x + 1 in
let b = x + 1 in
a+b

In f We clearly don't need to compute x + 1 two times

let f x
let a =
a+ a

in

|
x
4

e earlier unboxing: Floats are boxed in ocaml, this means that there is an indirection when accessing the
constant of a value of type float. To reduce the cost of allocating and accessing floats unboxing

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html 12/14

04/10/13 OCamlPro :: Blog :: Optimisations you shouldn't do

eliminates the indirections between some operations. I'd like to try to do this as a flambda pass to be
able to use the results of the value analysis.

If you want to play/hack a bit with the demo look at my github branch (be warned, this branch may
sometimes be rebased)

0 comments 2

Best

No one has commented yet.

ALSO ON OCAMLPRO WHAT'S THIS?
An Overview of our Current Activities Blog :: News from July
— Thanks for the useful info — I'd be more than happy to test the new
Fabrice. I've been playing around with merlin inliner as soon as cross-module inlining is
and it's great. Looking forward to trying out ... available, since | have many use cases where ...

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html

13/14

http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
http://redirect.disqus.com/url?url=http%3A%2F%2Fwww.ocamlpro.com%2Fblog%2F2013%2F02%2F18%2Fmonthly-01-02.html%3ADz4MKNJX3pm3uIAAabF08RK5lFA&imp=p3bop72j53u4i&forum_id=792098&forum=ocamlpro&thread_id=1314187763&major_version=metadata&thread=1090835473&zone=internal_discovery
http://redirect.disqus.com/url?url=http%3A%2F%2Fwww.ocamlpro.com%2Fblog%2F2013%2F02%2F18%2Fmonthly-01-02.html%3ADz4MKNJX3pm3uIAAabF08RK5lFA&imp=p3bop72j53u4i&forum_id=792098&forum=ocamlpro&thread_id=1314187763&major_version=metadata&thread=1090835473&zone=internal_discovery
http://redirect.disqus.com/url?url=http%3A%2F%2Fwww.ocamlpro.com%2Fblog%2F2013%2F08%2F05%2Fmonthly-07.html%3AYYKnZYh7Da5WePnJfR9u8Es6f6s&imp=p3bop72j53u4i&forum_id=792098&forum=ocamlpro&thread_id=1314187763&major_version=metadata&thread=1571398437&zone=internal_discovery
http://redirect.disqus.com/url?url=http%3A%2F%2Fwww.ocamlpro.com%2Fblog%2F2013%2F08%2F05%2Fmonthly-07.html%3AYYKnZYh7Da5WePnJfR9u8Es6f6s&imp=p3bop72j53u4i&forum_id=792098&forum=ocamlpro&thread_id=1314187763&major_version=metadata&thread=1571398437&zone=internal_discovery
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
http://disqus.com/
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
https://disqus.com/admin/signup/?utm_source=ocamlpro&utm_medium=Disqus-Footer
http://www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html#
https://github.com/chambart/ocaml/tree/flambda_experiments

04/10/13

OCamlPro :: Blog :: Optimisations you shouldn't do

Products Services Company
OPAM Technical Support Contact Us
TypeRex Consulting Company
Project Sponsoring Training Team

Jobs

© 2011 OCamlPro SAS, All rights reserved. Contact an administrator.

www.ocamlpro.com/blog/2013/05/24/optimisations-you-shouldn-t-do.html

28

Internships

14/14

http://www.ocamlpro.com/products/opam.html
http://www.ocamlpro.com/products/typerex.html
http://www.ocamlpro.com/products/sponsors.html
http://www.ocamlpro.com/services/support.html
http://www.ocamlpro.com/services/consulting.html
http://www.ocamlpro.com/services/training.html
http://www.ocamlpro.com/company/contact.html
http://www.ocamlpro.com/company/ocamlpro.html
http://www.ocamlpro.com/company/team.html
http://www.ocamlpro.com/company/jobs.html
http://www.ocamlpro.com/company/internships.html
https://github.com/OCamlPro
http://www.ocamlpro.com/feed/atom.xml
mailto:contact@ocamlpro.com

