High-Performance GPGPU Programming with OCaml

Mathias Bourgoin, Emmanuel Chailloux, Jean-Luc Lamotte

Laboratoire d’Informatique de Paris - UMR 76061
Université Pierre et Marie Curie - Sorbonnes Universités
4 place Jussieu, 75005 Paris, France
{Mathias.Bourgoin, Emmanuel.Chailloux, Jean-Luc.Lamotte}@lip6.fr

We present an OCaml GPGPU library with a DSL embedded into OCaml to express GPGPU kernels. The level of
performance achieved is measured through different examples. We also discuss the use of GPGPU programming to
increase the performance of multicore-CPUs software, written in OCaml.

GPGPU Programming

GPGPU (General Purpose Graphic Processing Unit) programming
consists in using GPU devices to increase software performance.
GPUs are manycore architectures combining a dedicated memory
with several hundreds of computation units. GPGPU programming
demands to describe a host program, running on the CPU, as well as
computation kernels, running on the GPU. It is commonly handled
through the use of the Cuda[4] or OpenCL[6] frameworks. Both
are using the Stream Processing paradigm that is based on SIMD
(Single Instruction Multiple Data) and simplifies the parallelism by
describing parallel computations as the application of a simple se-
ries of operations over every element of a data stream, producing a
new stream as a result.

GPGPU Programming with OCaml

To allow GPGPU programming with OCaml, we propose a library,
SPOC (Stream Processing with OCaml) that unifies both OpenCL
and Cuda frameworks and offers automatic data transfers between
CPU and GPU memory. To express kernels, we offer a DSL embed-
ded into OCaml: Sarek (Stream ARchitecture Extensible Kernel).
We also provide interoperability between SPOC and current solu-
tions to allow the use of existing high performance libraries.

SPOC. SPOC[2] allows GPGPU programming with OCaml. It is
based on the Cuda and OpenCL frameworks, abstracting some of
the low-level, verbose and error-prone boilerplate.

SPOC automatically detects, at runtime, every device compat-
ible with Cuda or OpenCL on the system. It offers a unified API
to handle them that allows to use any kind of device regardless of
the framework they depend on. It also eases the development of
multi-GPGPU software using different devices conjointly.

The memory bandwidth of the bus linking GPGPU devices and
the CPU host is relatively small (10-20 x that of the GPGPU itself).
Thus, transfers can introduce bottlenecks in the whole program
and demand to be optimized to achieve high performance. To ease
GPGPU programming, SPOC manages transfers automatically. It
introduces a vector data-set that is very similar to OCaml bigarrays
that are monomorphic and can contain different kinds of integers,
floats or booleans. Besides, SPOC always knows vectors location
(on CPU or GPGPU memory) and is able to transfer them when
needed. In particular, SPOC checks that every vector used by a
GPGPU kernel is present in GPGPU memory (and triggers trans-
fers if needed) before launching the computation. Similarly, when
the CPU reads or writes in a vector, SPOC checks its location and
transfers it if needed. Furthermore, SPOC uses the OCaml garbage
collector to manage vectors and trigger transfers to the CPU mem-
ory when the GPU memory is full.

!Work partially funded by the OpenGPU Project : http://opengpu.net

Sarek. To express kernels we propose a domain specific language,
embedded into OCaml: Sarek. We’ve built it as a CamIP4 OCaml
extension. It offers an OCaml-like syntax with type inference and
static type checking. Current solutions are very difficult to debug,
especially with OpenCL which commonly compiles kernels at run-
time. Offering static type-checking already improves GPGPU pro-
gramming by enabling error detection at compile-time. Otherwise,
Sarek is very similar to the C subsets that are offered in Cuda or
OpenCL. It is an imperative language used to express monomor-
phic elementary operations that will automatically be computed in
parallel by the multiple computation units of GPGPU devices.

To use current high-performance GPGPU libraries as well as to
allow developers to hand-tune their GPGPU kernels, we also per-
mit to declare external GPGPU kernels somewhat similarly to the
way OCaml already handles C externals.

1 open Spoc

2 let vec_add = kern a b ¢ n —>

3 let open Std in Kernel Code
4 let idx = global_thread_id in (Sarek)
5 if idx < n then

6 c.[<idx>] <— a.[<idx>] + b.[<idx>]

7

8 let dev = Devices.init () \

9 let n = 1_000_000

10 let vl = Vector.create Vector.float64 n

11 let v2 = Vector.create Vector.float64 n

12 let v3 = Vector.create Vector.float64 n

13

14 let block = {blockX = 1024;

15 blockY = 1; blockZ = 1}

16 let grid={gridX=(n+1024—-1)/1024;

1; gridYy=1; gridz=1} ¢ Host Code
19 let main () = (SPOC)
20 random_fill v1;

21 random_fill v2;

22 Kirc.gen vec_add;

23 Kirc.run vec_add (v1, v2, v3, n)

24 (block,grid) dev.(0);

25 for i = 0 to Vector.length v3 — 1 do

26 Printf.printf "res[%d] = %f; " i v3.[<i>]

27 done; )

We present a simple example using SPOC and Sarek. The GPGPU
kernel, written with Sarek, mainly consists in an elemental addition
(line 6). It will be computed by a large number of threads, the code
line 3-5 is used to ensure that no thread will try to access indexes
out of the vectors boundaries.

The host program initializes the SPOC system (line 8). De-
vices.init returns an array of devices usable with SPOC. We
then declare some vectors that will be used in the program (lines
9-12). Lines 14-17 consists in the declaration of a grid of blocks of
threads that describes the layout of the GPGPU computation units
we intend to run our kernel on. This is a virtual layout that will
be mapped to the hardware one when the kernel is launched. Here,
the grid will be composed a thread per element in our vectors. Run-
ning a kernel on it will allow n threads to compute the kernel code,



resulting in a full vector addition. The Sarek code is compiled to
Cuda/OpenCL dynamically (line 22). The kernel is then launched
on a device (line 23-24), using the block and grid layout as param-
eters, as well as every parameter needed by the kernel to run cor-
rectly. Here all vectors (v1, v2 and v3) are automatically transferred
to the device memory before the actual computation. Then the re-
sult (computed in v3) is printed by the CPU (lines 25-27). The CPU
waits for the GPU to end its computation then transfers back v3 to
be able to read its new values. vl and v2 stay on the GPGPU mem-
ory, waiting for future uses or for the OCaml garbage collector to
free them.

Benchmarks. To check the performance achieved by our solu-
tion we propose simple benchmarks as well as the translation of a
HPC software from FORTRAN to OCaml.

We tested SPOC with two common data-parallel examples,
Mandelbrot and Matrix Multiplication. We present the results
achieved with multiple GPU devices compared to those sequential
OCaml computation on an Intel Core-i7 3770.

Sample / Device OCaml C2070 GTX 680 AMD6950
Sequential (s) Cuda (s) Cuda (s) OpenCL (s)
Mandelbrotey 1745 59 | x804 | 40 | x1186 | 49 | x96.8
Mandelbrotsgrer ’ 7.0 | x67.8 | 4.8 X98.8 | 5.6 X 84.7
Matmultey 85.0 1.3 X654 | 1.7 x50.0 | 0.3 x283.3
Matmultsyyer : 17 | x500 [ 21 | x405 | 03 | x2833

For each sample, the first line shows the time and speedups ob-
tained using SPOC and external kernels. The second line presents
the results with Sarek. These show that using SPOC offers very
high speedups over OCaml for intensive data-parallel programs.

To make sure that SPOC and Sarek are efficient with real-world
programs, we ported the PROP software of the 2DRMP[5] suite
from FORTRAN to OCaml. 2DRMP simulates the scattering of elec-
trons in H-like ions at intermediates energies. It is a HPC (High
Performance Computing) software awarded with the HPC prize for
Machine Utilization, by the UK Research Councils’ HEC Strategy
Committee in 2006 that ensures us to work with state of the art
HPC software. It is written in FORTRAN and heavily uses Cublas
and Magma libraries for GPGPU computations. We bound those
libraries to OCaml using SPOC before we porting the several ker-
nels used in PROP into Sarek. We did not translate the I/O code,
keeping it in FORTRAN.

Running Device Running Time Speedup
FORTRAN CPU 1 core 4271.00s (71m11s) 1.00
FORTRAN CPU 4 core 2178.00s (36m18s) 1.96
FORTRAN GPU 951.00s (15mb1s) 449
OCaml (external kernels) | 1018.00s (16m58s) 4.20
OCaml (Sarek) 1195.00s (19m55s) 3.57

Our translation is compared to different FORTRAN version of
PROP. Using Sarek, our solution achieves 80% of the hand-tuned
FORTRAN performance, while using external kernels, it grows to
93%. Our two versions offer a dramatic reduction of code size (30%
less) mainly due to automatic memory management with automatic
transfers. These very good results show that SPOC and Sarek can be
used for OCaml programmers to increase the performance of their
intensive data-parallel computations but also to ease the develop-
ment of real HPC programs, as the performance is on par with that
of low-level hand-tuned solutions.

SPOC for Multicores

OCaml is currently allowing concurrency, but without parallelism.
As we have seen, SPOC and Sarek are useful to benefit from the
GPGPU high performance with OCaml. Moreover, current CPUs
are usable with the OpenCL framework, easing the efficient pro-
gramming of multicore software. Thus, we propose to use SPOC
and Sarek to benefit from multicore CPUs with OCaml.

In order to verify that SPOC proves being a good solution for
multicore CPU computations, we tested simple benchmarks, com-
paring SPOC with OC4MC[1] and ParMap[3]. OC4MC is an ef-
fort to provide an alternative runtime/GC to OCaml allowing par-
allel threads. It provides a thread library compatible with the stan-
dard one, offering full compatibility with current OCaml programs.
ParMap is an OCaml library providing Map/Fold constructs overs
arrays and lists that offer auto-forking of OCaml code, provid-
ing automatic parallelism. OC4MC is a low level solution, de-
manding the development of complex programs using posix threads
while ParMap offers a high-level solution that mainly targets data-
parallelism. We compared SPOC with OC4MC through the clas-
sic matrix multiplication, and with ParMap via a program raising
naively every elements of a vector to the power of 100. These pro-
grams show the behavior of each solution for data-parallel compu-
tations, where they should perform the best.

OCaml | ParMap | OC4MC | SPOC + Sarek
Power 11s14 3530 - <ls
Matmul 85s - 28s 6.2s

Each solution provides high speedups over OCaml sequential
computations, however, SPOC offers the best performance. This
is mainly due to the use of GPGPU programming frameworks in
SPOC'’s core that benefit from every extensions of current CPUs
(including SIMD ones) with automatic vectorization.

Conclusion

We presented SPOC, an OCaml library to allow GPGPU program-
ming. SPOC offers automatic management of GPGPU devices
as well as automatic transfers between CPU and GPGPU mem-
ory. With SPOC we offer Sarek, a DSL, embedded into OCaml
to express GPGPU kernels. Sarek features an OCaml-like syn-
tax with static type-checking, improving GPGPU software devel-
opment. We tested our solution with multiple examples showing
that it offers very high performance and can be used as a solution
to develop HPC software. Furthermore, we compared SPOC with
current efforts to provide parallel computations to OCaml, showing
that SPOC can also be used to improve multicore CPU performance
with OCaml.

Currently, Sarek manages vectors of float or int values. To provide
more expressivity, while giving more flexibility to developpers, cus-
tom (record and variant) type definition will be added to the lan-
guage. We also plan to provide interoperability between SPOC and
OpenGL to be able to express 3D shaders with Sarek.

References

[1] Mathias Bourgoin, Benjamin Canou, Emmanuel Chailloux,
Adrien Jonquet, and Philippe Wang. OC4MC: Objective Caml
for Multicore Architectures. In Draft Proceedings of the 21st
Symposium on Implementation and Application of Functional
Languages., 2009.

[2] Mathias Bourgoin, Emmanuel Chailloux, and Jean Luc Lamotte.
SPOC : GPGPU Programming through Stream Processing with

OCaml. Parallel Processing Letters, 2012.

Marco Danelutto and Roberto Di Cosmo. A “minimal disrup-
tion” skeleton experiment: seamless map & reduce embedding
in OCaml. Procedia Computer Science, 2012.

NVidia. Cuda C Programming guide, 2012.

NS Scott, MP Scott, PG Burke, T. Stitt, V. Faro-Maza, C. Denis,
and A. Maniopoulou. 2DRMP: A Suite of Two-Dimensional R-
Matrix Propagation Codes. Computer Physics Communications,
2009.

[6] Khronos OpenCL WG. OpenCL 1.2 specifications, 2012.



