
G:  A T  B
H L OC  JS I

Benjamin Canou
Laboratoire d'Informatique de Paris 6 - UMR 7606¹

Université Pierre et Marie Curie - Sorbonne Universités, 4 place Jussieu, 75005 Paris, France
benjamin.canou@lip6.fr

A
We present a tool that helps writing and maintaining OCaml bindings of JavaScript libraries
(browser built-in or third party), for use in js_of_ocaml or obrowser[6, 3, 5]. Goji defines a
format for writing high level descriptions of these interfaces and provides a compiler from this
format to OCaml. Its main strength is its ability to produce bindings that look like native OCaml
libraries, hiding as possible the underlying JavaScript implementations.

B  M
ere are currently twoways to interface OCaml and JavaScript.

First, it is possible to use the venerable external syntax, usually
used for interfacing OCaml and C. In this case, most of the inter-
operability code is wrien in JavaScript. e other (recommended
when possible) option is to use a small set of combinators that ma-
nipulate JavaScript objects from OCaml, much as Haskell's FFI or
the recent ocaml-ctypes[1].

U FFI On one hand, with the first method, library binders have
to write a lot of boilerplate JavaScript code to convert the values
that travel between the two worlds. Moreover, JavaScript's calling
convention being much more flexible than C's, calling JavaScript
through the rudimentary external mechanism can be tedious. In
particular, it oen means writing high level OCaml wrappers man-
ually around external calls. is is for instance the case when map-
ping OCaml optional arguments to JavaScript ones.

R FFI On the other hand, the second method removes the
need to write JavaScript code and bypasses the external keyword.
It is also very concise. But paradoxically, JavaScript objects are more
visible since they become first class OCaml values. In particular, it
is up to the user to convert OCaml values to JavaScript ones before
feeding them to JavaScript. Moreover, to check the use of JavaScript
objects statically, js_of_ocaml introduces a clever trick that maps
the structure of external JavaScript objects to phantom OCaml ob-
ject types than encode their methods and aributes. Overloading
and variadicity are handled using syntactic conventions. Optional
arguments can be implemented by handling null and undefined
values explicitly. In the end, the programmer does not write in
OCaml but in a mix of OCaml and a pseudo typed JavaScript.

To sum up, we have on one hand a solution which can lead to
high level, well isolated interfaces, but requires a lot of boring code
writing, and on the other hand a solution which is clever and con-
cise but very intrusive, making the internal structure of JavaScript
libraries leak inside the OCaml program using them. We designed
Goji to keep the best of these two approaches while avoiding their
flaws. Goji aims at allowing programmers to write bindings quickly
and concisely while providing a good level of abstraction and isola-
tion from the underlying JavaScript implementation.

A OC D
In order to remain concise, we simply reused a good old idea: we

defined an interface description language (IDL) and wrote a com-
piler that generate automatically the boring interface code from
it. But in order to build high-level bindings that seem native, this
IDL takes an unusual form. Most IDLs, such as TypeScript[2]'s or
Mozilla's ones, define bindings in a symmetric way: an object in the
implementation language becomes an object in the high-level lan-
guage, a method becomes a method, etc. is is acceptable when
both languages have similar data structures, as in the case of the
two aforementioned examples. But in our case, given that OCaml
and JavaScript are quite different, we believe that this symmetry is
what makes writing good OCaml bindings difficult. us, in order
to break it, Goji's IDL is split into two parts, one dedicated to de-
scribe the desired OCaml binding, the other to map this description
to JavaScript calls.

L is design choice of an asymmetric approach brings
advantages but also limitations. e most notable one is the dif-
ficulty to extend libraries with OCaml parts, such as writing new
widget types in OCaml in a UI library. We assume this as a price to
pay, but we still provide ways to work around it whenever neces-
sary.

T IDL For now, Goji takes the form of a rough domain specific
language inside OCaml. e library binder writes the syntax tree of
the interface description as an OCaml value, with the help of com-
binators. It does not come with a concrete syntax but could be given
one in the future if it becomes necessary.

S  e top level part of the IDL consists in
defining how the generated library will look. It includes the pos-
sibility to describe modules and sections, independently from the
JavaScript structure, in order to refactor the architecture of the li-
brary and make it look like a native OCaml module. is feature can
also be used to increase the consistency between library bindings
and even insert cross references. Documentation can be inserted at
almost every place, and will be output in the .mli files, and thus
in the generated ocamldoc. Moreover, every JavaScript name can
be changed in order to obtain a consistent and OCaml-like naming
scheme (using underscores instead of capitals, for instance).

E  Inside modules, it is possible to define
types and values. Types can describe concrete OCaml structures, ab-
stract extern JavaScript objects, automatically converted JavaScript
values, or a combination of the three. One can also describe exter-
nal global functions or data accessors. For extern JavaScript objects,

¹Work partially supported by the French national research agency (ANR), PWD project, grant ANR-09-EMER-009-01 and performed at the IRILL center for Free Soware
Research and Innovation in Paris, France.

there is also a way to describe method callers and aribute acces-
sors. Method and function parameters can use OCaml's optional
and labeled arguments.

M  JS
An important part of Goji is then dedicated to map this OCaml-

centric description to the JavaScript implementation. It includes no-
tations to describe how values are converted, how arguments are
passed. It also provides predefined constructs to make descriptions
more concise.

M  For this, we use a declarative description that can
be used to generate the converters for both directions. It is possi-
ble to use it when declaring OCaml types that are bound to extern
JavaScript objects. In this case, these types will appear as concrete
OCaml objects and be converted on demand whenever necessary.

It is expressive enough to map, for instance, a JavaScript value
of the form {x:1, y:2, x2:3, y2:4} to an OCaml pair of pairs
((1, 2), (3,4)) using the following declaration.

Type ([], "boundaries", Intern (Tuple [
Tuple [Value [Field (Root,"x"), Float] ;

Value [Field (Root,"y"), Float]],
Tuple [Value [Field (Root,"x2"), Float] ;

Value [Field (Root,"y2"), Float]]])) ;

M  Several tools are provided in order to map
OCaml calls to the various calling conventions defined by JavaScript
developers. First, it is possible to define several OCaml functions for
one in JavaScript. is is useful when binding some JavaScript pat-
terns that would feel weird to OCaml developers. For instance, a
common paern is the geer-seer: a single function which gets a
value if no argument is passed and assigns it to its argument other-
wise. It is also possible tomapOCaml optional arguments to the var-
ious kind of optional argument passing in JavaScript (eg. arity over-
loading, undefined or null placeholders, boxed argument groups).
In addition, it is also possible to use an OCaml list to call a variadic
function.

For instance, let us bind a JavaScript function f which takes an
object with fields x and y and optionally a field ofs with the same
x and y fields. Two JavaScript calls would be f({x:1,y:3}) and
f({x:1,y:3,ofs:{x:1,y:1}}). We can define a binding like this:

Function ("f", Var "f", [
Optional ("ofs", Tuple [

Value [Field (Field (Arg 0, "ofs"), "x"), Float] ;
Value [Field (Field (Arg 0, "ofs"), "y"), Float]]) ;

Curry ("point", Tuple [
Value [Field (Arg 0, "x"), Float] ;
Value [Field (Arg 0, "y"), Float]]) ;

], None)

e generated function has the following signature:
val f : ?x:float * float -> float * float -> unit

A   In order to keep the IDL concise as
well as to provide high-level interfaces, Goji provides predefined
constructions that correspond to paerns commonly encountered
in JavaScript libraries. is is actually an important design choice
of the tool. For instance, many libraries use manually chosen unique
string identifiers. In most cases, binding this behavior as is would
result in interfaces that do not feel like OCaml, and that are not type-
safe enough. Instead, it is possible to bind an OCaml abstract type
to an automatic symbol generator using the Gen_sym type mapping.
As an example, this construct can allow a JavaScript polymorphic
key× value store to be interfaced in a type safe way, producing the
following signature.

type 'ty key
val make_key : unit -> 'a key
val get : store -> 'a key -> 'a option
val set : store -> 'a key -> 'a -> unit

e make_key has been automatically added when compiling the
Gen_sym construct in the following corresponding IDL extract.
Type (["ty"],"key",Gen_sym) ;
Method ("store",{ocaml_name = "get"; js_name = "data"},

[Curry ("key",Value [Arg 0,Abbrv (["ty"],"key")],
Some (Value [Root,Nullable (Param "ty")]) ;

Method ("store",{ocaml_name = "set"; js_name = "data"},
[Curry ("key",Value [Arg 0,Abbrv (["ty"],"key")] ;

Curry ("value",Value [Arg 1,Param "ty"])],
None) ;

C C G
Goji's current code generator produces abstract types and func-

tions for JavaScript method bindings. We plan to write another out-
put module that produces OCaml objects. e structure of the IDL
has been designed for that. In the same vein, several generation op-
tions are planned to modulate specific parts of the code generation.
In particular, event handlers could be compiled to plain OCaml call-
backs, Lwt or preemptive threads.

In this context, the recommended usage is to distribute IDL files
and not the OCaml code generated from them. is way, program-
mers can use a library consistently with their own code style. Goji
can also take several IDL files and produce a single OCaml package
with a single entry point for documentation. is way, a program-
mer can make a choice of libraries and build a complete integrated
development platform for building his app.

C  P
Goji is a binding generator that is able to produce bindings that

are well structured and documented and look like native OCaml li-
braries. It has predefined constructs for common JavaScript paerns
that enable to keep IDL files reasonably simple and concise. Using
it, we have been able to write high-level bindings for a part of the
browser's environment, the canvas and third party libraries Raphael
(vector graphics library) and Howler (audio library).

We are currently working on bindings for jery (a general pur-
pose library), Enyo[4] (a component-based UI library) and Phone-
gap (an abstraction layer to access mobile devices hardware). We
are also working on the object oriented back-end. A longer term
task is to identify JavaScript idioms that should be added as built-in
constructs (as the Gen_sym presenter earlier). In particular, it could
be interesting to study the various extension / plug-in mechanisms
in order to provide ways to extend JavaScript libraries with OCaml
components.

R
[1] http://github.com/ocamllabs/ocaml-ctypes.
[2] http://www.typescriptlang.org/.
[3] Benjamin Canou, Vincent Balat, and Emmanuel Chailloux. O'browser:

objective caml on browsers. In Proceedings of the ACM Workshop on
ML, 2008, Victoria, BC, Canaday, September 21, 2008, pages 69--78. ACM,
2008.

[4] Benjamin Canou, Emmanuel Chailloux, and Vincent Botbol. Static typ-
ing & javascript libraries: Towards a more considerate relationship. In
World Wide Web Conference, developers tra, 2013.

[5] Benjamin Canou, Emmanuel Chailloux, and Jérôme Vouillon. How to
run your favorite language in web browsers. In World Wide Web Con-
ference, developers tra, 2012.

[6] Jérôme Vouillon and Vincent Balat. From bytecode to javascript: the
js_of_ocaml compiler. Soware: Practice and Experience, 2013.

