
The Frenetic Network Controller

http://github.com/frenetic-lang/frenetic/contributors

June 18, 2013

Abstract

Frenetic is a software-deàned networking controller platform. With Frenetic, developers de-
scribe the intended behavior of the network in a high-level language, and the compiler and
run-time system generate the low-level code needed to execute programs efàciently in hard-
ware. This talk will introduce the key programming abstractions provided in Frenetic, and
present highlights of our experiences implementing those abstractions in OCaml.

1 Overview

Software-deàned networking (SDN) is an emerging network architecture inwhich a logically-
centralized controller machine manages the behavior of a collection of programmable switches.
This design simpliàes network algorithms and also makes it easy to extend the network with
new functionality. It is in stark contrast to traditional architectures, in which network algo-
rithms must be expressed using complicated distributed programs that execute on propri-
etary devices. Most SDN controller platforms provide low-level programming interfaces that
closely mirror the capabilities of the underlying hardware. Frenetic is unique in that it pro-
vides a high-level, declarative interface that abstracts away from the details of the hardware
and allows developers to focus on the essential features of network programs.

Figure 1 depicts Frenetic’s architecture and core policy language. Each policy denotes a
function from sets of packets to sets of packets. The policy Id denotes the identity function,
whileDropdenotes the constant function that produces the empty set. The policySwitch(sw)
is a àlter that retains packets on switch sw and drops other packets. Likewise, Match(pat)
and NoMatch(pat) retains packets whose header àelds match and do not match pat respec-
tively. The Union and Sequence operators, often abbreviated as (+) and (;), denote union
and sequential composition. The Forward(out) policy forwards packets to the location out,
which must be adjacent in the network topology. The policy Controller(h) invokes the
handler h on each input packet. Finally, Query(f,h) computes the number and total size
of all input packets and invokes the handler h every f seconds. To illustrate, consider the
following program, which implements a simple àrewall and monitoring policy:

NoMatch(icmp); Forward(all)
+ Query(60.0, print)

It blocks  (ping) trafàc and behaves like a repeater on all other trafàc, and also prints the
total amount of trafàc to the console every minute.

1



..

Switch
Switch

OpenFlowLib

NetCoreLib

Frenetic Program

Switch

type pol =
| Id
| Drop
| Switch of switch
| Match of pattern
| NoMatch of pattern
| Union of pol * pol
| Sequence of pol * pol
| Forward of output
| Controller of (packet -> unit)
| Query of float * (stats -> unit)

(a) (b)

Figure 1: Frenetic (a) architecture (b) core syntax.

2 System

The Frenetic implementation [1] has several distinct components:

OpenFlowLib: Provides datatypes, parsers, and serializers for OpenFlow, the most popular
SDN framework. This librarymakes heavy use of the cstructpackage, which provides
constructs for manipulating C-style structures in OCaml and greatly simpliàes the task
of writing binary parsers and serializers.

PacketLib: Provides datatypes, parsers, and serializers for Ethernet, IP, ARP, TCP, and UDP
packets. This library also relies heavily on the cstruct package. To ensure good perfor-
mance, the parsers are lazy, which allows programmers to efàciently access particular
àelds of packets as needed.

NetCoreLib: Implements the Frenetic policy language. It deànes the abstract syntax, as well
as a compiler and run-time system that implements this language using the lower-level
interface provided by OpenFlowLib.

Veriàcation: Although not included in our main development branch, we have also imple-
mented and mechanically veriàed a compiler and run-time system in Coq. In addition,
we have built a tool that automatically checks network reachability properties using Z3.

Main: Provides a number of additional features including natural surface syntax, support for
dynamic and stateful policies using Lwt, and integrated testing and debuging facilities.

This talk will introduce the key programming abstractions provided in Frenetic, and present
highlights of our experiences implementing those abstractions in Coq and OCaml.

References
[1] Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-veriàed network controllers. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Seattle, WA, June
2013. To appear.

2


