
ctypes: foreign calls in your native language

Jeremy Yallop
University of Cambridge

Saying hello to C

The ctypes library provides a typed, high-level interface for describing C types, accessing C data, and calling C
functions. Using ctypes, you can bind to foreign functions without writing or generating C.

Getting started with ctypes is straightforward. The “Hello, C” of foriegn function calls involves one line of
code to give the name and type of the printing function puts and a second line to call the function:

let puts = foreign "puts" (string @→ returning int);;
val puts : string → int = <fun>
puts "Hello, C!";;
Hello, C!

Getting C to give you the time of day

C libraries often expose structured types for passing or returning data. We’ll use the posix time interface as a
typical example, presenting C and OCaml in a two-column format. The left-hand side shows part of the posix
interface, while the right-hand side gives the corresponding ctypes code that describes the various structs and
functions in OCaml.

struct timeval {
time t tv sec;
suseconds t tv usec;
};

struct timezone;

int gettimeofday(struct timeval *tv,
struct timezone *tz);

char *ctime(const time t *timep);

let timeval = structure "timeval"

let tv sec = timeval *:* time t
let tv usec = timeval *:* suseconds t
let () = seal timeval

let timezone = structure "timezone"

let gettimeofday = foreign "gettimeofday"

(ptr timeval @→ ptr timezone @→ returning int)

let ctime = foreign "ctime" (ptr time t @→ returning string)

Having described the relevant types and functions to OCaml, we now have everything we need to allocate a struct

timeval value, pass its address to gettimeofday, and display the result. The make, addr and (@.) functions
respectively allocate a struct, take its address, and access one of its fields.

let tv = make timeval in begin
ignore (gettimeofday (addr tv) (from voidp timezone null));
Printf.sprintf "The date and time are %s" (ctime (tv @. tv sec))

end
− : string = "The date and time are Fri Jun 7 18:32:28 2013"

Asking C to call you back

C functions which accept function pointers as arguments can be difficult to use from OCaml. A function pointer
is a reference to one of a statically-determined set of global names; it is too narrow an interface to readily accept
OCaml functions, which can be created dynamically. However, ctypes makes passing OCaml functions to C as
straightforward as passing first-order values, as the next example demonstrates. Our example is based on qsort,

1

the canonical example of a function pointer consumer. The C interface and the ctypes bindings again occupy the
left and right columns respectively.

typedef int cmp(void *l, void *r);

void qsort(void *p, size t els, size t sz, cmp *compare);

let cmp = ptr void @→ ptr void @→ returning int

let qsort = foreign "qsort"

(ptr void @→ size t @→ size t @→ funptr cmp @→
returning void)

Calling qsort is not difficult, but involves a number of coercions. We need to pass size t values for the element
size and array length, but our sizeof and Array.length1 functions return int. Similarly, qsort expects an
untyped pointer to the first element of the array, but the pointer returned by Array.start is typed. We also
need to coerce the arguments to the callback function from generic pointers to pointers of the appropriate type.
We can hide all these coercions inside a function with a simple interface:

let sort : α. α array → (α → α → int) → unit
= fun arr cmp →

let ty = Array.element type arr in
qsort
(to voidp (Array.start arr))
(Size t.of int (Array.length arr))
(Size t.of int (sizeof ty))
(fun l r → cmp (!@(from voidp ty l)) (!@(from voidp ty r)))

Now we can sort arrays using the C qsort function and an OCaml comparison function:

let int arr = Array.of list int [5; 3; 1; 2; 4] and str array = Array.of list string ["one"; "two"; "three"; "four"]
val int arr : int array = <abstr>
val str arr : string array = <abstr>
sort int arr Pervasives.compare; Array.to list int arr
− : int list = [1; 2; 3; 4; 5]
sort str arr (fun l r → Pervasives.compare r l); Array.to list str arr
− : string list = ["two"; "three"; "one"; "four"]

Related work
The central idea behind ctypes —writing OCaml-to-C bindings in OCaml rather than in C— has been used
successfully in other languages. For example, James Bielman’s Common Foreign Function Interface for Common
Lisp, Matthias Blume’s No-Longer-Foreign Function Interface for SML and Thomas Heller’s ctypes library for
Python (from which this OCaml library draws both its name and its inspiration) are all based on this approach.

Future plans
We have a number of directions in mind for future development.

Performance is naturally a concern for library that is intended to replace C code. While ctypes has been written
with performance in mind, a certain level of interpretative overhead remains which we are keen to eliminate. Here
the generality of the library puts it at a disadvantage compared with hand-written C, since the type of foreign
functions is not known to ctypes until runtime. We are investigating an solution based on MetaOCaml-style
staging and offshoring, i.e. specialising each foreign function binding once the type is known, before the function
is called.

We are also investigating an OCaml-Java backend for C types. The prospect of having C bindings written for
OCaml work without modification on OCaml-Java is appealing, and initial experiments seem encouraging.

A third area for development involves taking advantage of the greater abstraction introduced by ctypes to
give stronger guarantees about calls to C. For example, having ctypes remap the pages of the OCaml heap as
read-only when dropping into a C call might help to catch inadvertent modifications.

1The name Array in this abstract refers to the ctypes array module, not to the standard library module.

2

